Shortest Cycles With Monotone Submodular Costs

Fedor V. Fomin, Petr A. Golovach, <u>Tuukka Korhonen</u>, Daniel Lokshtanov¹, and Giannos Stamoulis²

¹University of California Santa Barbara ² LIRMM, Universite de Montpellier, CNRS

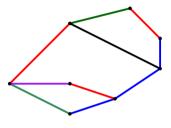
SODA 2023

23 January 2023

MINIMUM COLOR CYCLE

Input: Edge-colored undirected graph.

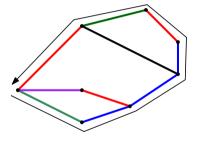
Output: Cycle with the minimum number of different colors.



MINIMUM COLOR CYCLE

Input: Edge-colored undirected graph.

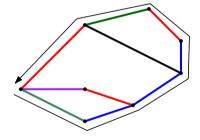
Output: Cycle with the minimum number of different colors.



MINIMUM COLOR CYCLE

Input: Edge-colored undirected graph.

Output: Cycle with the minimum number of different colors.

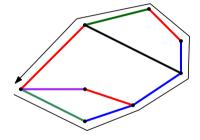


Polynomial-time or NP-hard?

MINIMUM COLOR CYCLE

Input: Edge-colored undirected graph.

Output: Cycle with the minimum number of different colors.

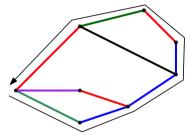


- Polynomial-time or NP-hard?
- If all edges have different colors, equivalent to shortest cycle

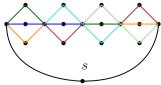
MINIMUM COLOR CYCLE

Input: Edge-colored undirected graph.

Output: Cycle with the minimum number of different colors.



- Polynomial-time or NP-hard?
- If all edges have different colors, equivalent to shortest cycle
- If we require the cycle to include a specified vertex s, then NP-hard [Broersma, Li, Woeginger, Zhang '05]

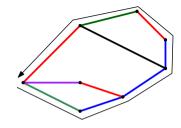


MINIMUM COLOR CYCLE

Input: Edge-colored undirected graph.

Output: Cycle with the minimum number of differ-

ent colors.



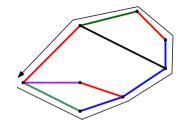
Our results for minimum color cycle:

MINIMUM COLOR CYCLE

Input: Edge-colored undirected graph.

Output: Cycle with the minimum number of differ-

ent colors.



Our results for minimum color cycle:

Theorem

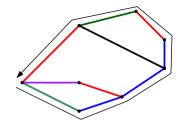
There is $n^{\mathcal{O}(\log \mathsf{OPT})}$ time algorithm for minimum color cycle.

MINIMUM COLOR CYCLE

Input: Edge-colored undirected graph.

Output: Cycle with the minimum number of differ-

ent colors.



Our results for minimum color cycle:

Theorem

There is $n^{\mathcal{O}(\log \mathsf{OPT})}$ time algorithm for minimum color cycle.

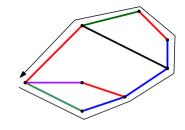
Quasipolynomial-time \rightarrow probably not NP-hard!

MINIMUM COLOR CYCLE

Input: Edge-colored undirected graph.

Output: Cycle with the minimum number of differ-

ent colors.



Our results for minimum color cycle:

Theorem

There is $n^{\mathcal{O}(\log \mathsf{OPT})}$ time algorithm for minimum color cycle.

Quasipolynomial-time \rightarrow probably not NP-hard!

Theorem

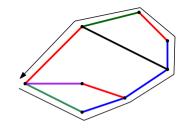
There is $n^{\mathcal{O}(\log 1/\varepsilon)}$ time $(1+\varepsilon)$ -approximation algorithm for minimum color cycle.

MINIMUM COLOR CYCLE

Input: Edge-colored undirected graph.

Output: Cycle with the minimum number of differ-

ent colors.



Our results for minimum color cycle:

Theorem

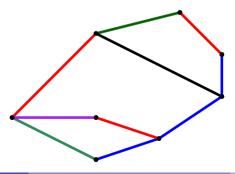
There is $n^{\mathcal{O}(\log \mathsf{OPT})}$ time algorithm for minimum color cycle.

Quasipolynomial-time \rightarrow probably not NP-hard!

Theorem

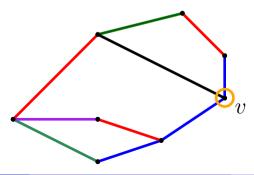
There is $n^{\mathcal{O}(\log 1/\varepsilon)}$ time $(1+\varepsilon)$ -approximation algorithm for minimum color cycle.

Note: The approximation scheme implies the $n^{\mathcal{O}(\log \mathsf{OPT})}$ algorithm

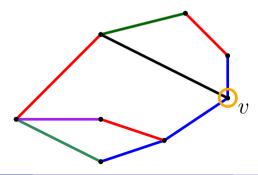


Goal: Recursive algorithm with $\mathcal{O}(\log \mathsf{OPT})$ recursion levels

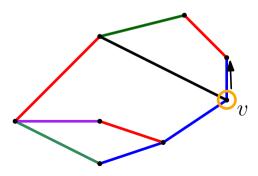
1. Guess a vertex *v* that is included in the cycle



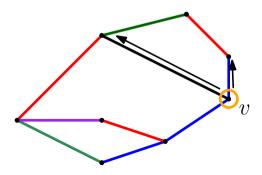
- 1. Guess a vertex v that is included in the cycle
- 2. Enumerate all paths with at most 1 color starting from v



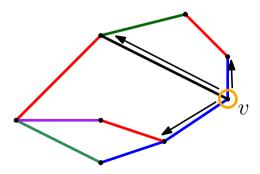
- 1. Guess a vertex *v* that is included in the cycle
- 2. Enumerate all paths with at most 1 color starting from v



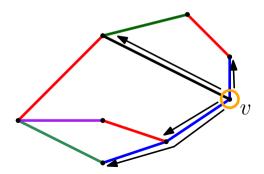
- 1. Guess a vertex *v* that is included in the cycle
- 2. Enumerate all paths with at most 1 color starting from v



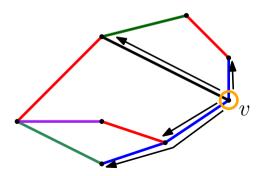
- 1. Guess a vertex *v* that is included in the cycle
- 2. Enumerate all paths with at most 1 color starting from v



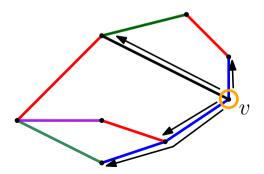
- 1. Guess a vertex *v* that is included in the cycle
- 2. Enumerate all paths with at most 1 color starting from v



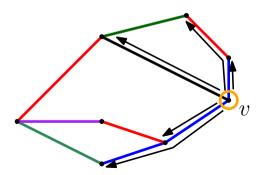
- 1. Guess a vertex v that is included in the cycle
- 2. Enumerate all paths with at most 1 color starting from v
- 3. Enumerate all paths with at most 2 colors



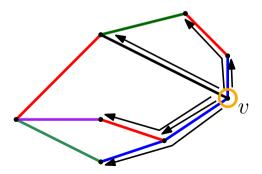
- 1. Guess a vertex v that is included in the cycle
- 2. Enumerate all paths with at most 1 color starting from v
- 3. Enumerate all paths with at most 2 colors \dots all paths with at most k colors



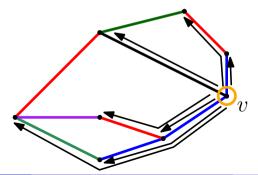
- 1. Guess a vertex v that is included in the cycle
- 2. Enumerate all paths with at most 1 color starting from v
- 3. Enumerate all paths with at most 2 colors \dots all paths with at most k colors



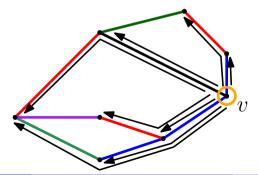
- 1. Guess a vertex v that is included in the cycle
- 2. Enumerate all paths with at most 1 color starting from v
- 3. Enumerate all paths with at most 2 colors \dots all paths with at most k colors



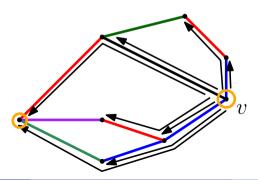
- 1. Guess a vertex v that is included in the cycle
- 2. Enumerate all paths with at most 1 color starting from v
- 3. Enumerate all paths with at most 2 colors \dots all paths with at most k colors



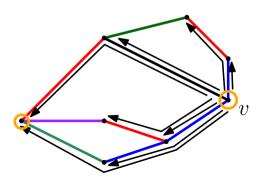
- 1. Guess a vertex v that is included in the cycle
- 2. Enumerate all paths with at most 1 color starting from v
- 3. Enumerate all paths with at most 2 colors \dots all paths with at most k colors



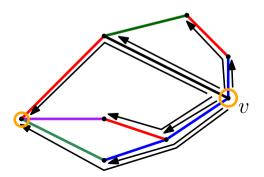
- 1. Guess a vertex v that is included in the cycle
- 2. Enumerate all paths with at most 1 color starting from ν
- 3. Enumerate all paths with at most 2 colors . . . all paths with at most *k* colors
- 4. Until two different paths to a same vertex



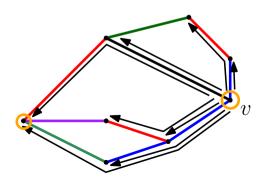
- 1. Guess a vertex v that is included in the cycle
- 2. Enumerate all paths with at most 1 color starting from v
- 3. Enumerate all paths with at most 2 colors . . . all paths with at most *k* colors
- 4. Until two different paths to a same vertex
 - Now, $k \leq \overrightarrow{OPT} \leq 2k$



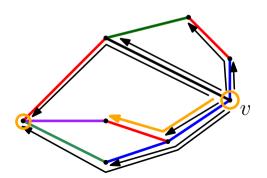
- 1. Guess a vertex v that is included in the cycle
- 2. Enumerate all paths with at most 1 color starting from v
- 3. Enumerate all paths with at most 2 colors . . . all paths with at most *k* colors
- 4. Until two different paths to a same vertex
 - Now, $k < \mathsf{OPT} < 2k$
 - poly(n) sets of k colors that can be obtained by a path starting from v



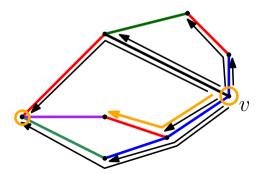
- 1. Guess a vertex v that is included in the cycle
- 2. Enumerate all paths with at most 1 color starting from v
- 3. Enumerate all paths with at most 2 colors . . . all paths with at most k colors
- 4. Until two different paths to a same vertex
 - ▶ Now, $k \le \mathsf{OPT} \le 2k$
 - ightharpoonup poly(n) sets of k colors that can be obtained by a path starting from v
- 5. Branch on which set of colors to select



- 1. Guess a vertex v that is included in the cycle
- 2. Enumerate all paths with at most 1 color starting from v
- 3. Enumerate all paths with at most 2 colors . . . all paths with at most *k* colors
- 4. Until two different paths to a same vertex
 - Now, $k \le \mathsf{OPT} \le 2k$
 - ightharpoonup poly(n) sets of k colors that can be obtained by a path starting from v
- 5. Branch on which set of colors to select



- 1. Guess a vertex v that is included in the cycle
- 2. Enumerate all paths with at most 1 color starting from v
- 3. Enumerate all paths with at most 2 colors . . . all paths with at most *k* colors
- 4. Until two different paths to a same vertex
 - ▶ Now, $k \le \mathsf{OPT} \le 2k$
 - ightharpoonup poly(n) sets of k colors that can be obtained by a path starting from v
- 5. Branch on which set of colors to select
- 6. Contract the colors and recurse



- 1. Guess a vertex v that is included in the cycle
- 2. Enumerate all paths with at most 1 color starting from v
- 3. Enumerate all paths with at most 2 colors . . . all paths with at most *k* colors
- 4. Until two different paths to a same vertex
 - Now, $k \leq \mathsf{OPT} \leq 2k$
 - poly(n) sets of k colors that can be obtained by a path starting from v
- 5. Branch on which set of colors to select
- 6. Contract the colors and recurse

- 1. Guess a vertex v that is included in the cycle
- 2. Enumerate all paths with at most 1 color starting from v
- 3. Enumerate all paths with at most 2 colors . . . all paths with at most *k* colors
- 4. Until two different paths to a same vertex
 - ▶ Now, $k \le \mathsf{OPT} \le 2k$
 - ightharpoonup poly(n) sets of k colors that can be obtained by a path starting from v
- 5. Branch on which set of colors to select
- 6. Contract the colors and recurse
- 7. Each recursion level gets half of the remaining solution $\rightarrow \log_2 OPT$ levels

- 1. Guess a vertex v that is included in the cycle
- 2. Enumerate all paths with at most 1 color starting from v
- 3. Enumerate all paths with at most 2 colors . . . all paths with at most k colors
- 4. Until two different paths to a same vertex
 - ▶ Now, $k \le \mathsf{OPT} \le 2k$
 - ightharpoonup poly(n) sets of k colors that can be obtained by a path starting from v
- 5. Branch on which set of colors to select
- 6. Contract the colors and recurse
- 7. Each recursion level gets half of the remaining solution $\rightarrow \log_2 OPT$ levels
 - $ightharpoonup n^{\mathcal{O}(\log \mathsf{OPT})}$ time

Generalization to monotone submodular functions

ullet Let $f: 2^{E(G)}
ightarrow \mathbb{R}_{\geq 0}$ be a monotone submodular function

Generalization to monotone submodular functions

- ullet Let $f: 2^{E(G)}
 ightarrow \mathbb{R}_{\geq 0}$ be a monotone submodular function
 - ▶ Submodular: for all $A, B \subseteq E(G)$ we have $f(A \cup B) + f(A \cap B) \le f(A) + f(B)$

Generalization to monotone submodular functions

- ullet Let $f: 2^{E(G)}
 ightarrow \mathbb{R}_{\geq 0}$ be a monotone submodular function
 - ▶ Submodular: for all $A, B \subseteq E(G)$ we have $f(A \cup B) + f(A \cap B) \le f(A) + f(B)$
 - ▶ Monotone: for all $A \subseteq B \subseteq E(G)$ we have $f(A) \le f(B)$

- Let $f: 2^{E(G)} \to \mathbb{R}_{>0}$ be a monotone submodular function
 - ▶ Submodular: for all $A, B \subseteq E(G)$ we have $f(A \cup B) + f(A \cap B) \le f(A) + f(B)$
 - ▶ Monotone: for all $A \subseteq B \subseteq E(G)$ we have $f(A) \le f(B)$

SHORTEST SUBMODULAR CYCLE

Input: Graph *G* and a monotone submodular function $f: 2^{E(G)} \to \mathbb{R}_{\geq 0}$.

Output: Cycle $C \subseteq E(G)$ of G that minimizes f(C).

- Let $f: 2^{E(G)} \to \mathbb{R}_{\geq 0}$ be a monotone submodular function
 - ▶ Submodular: for all $A, B \subseteq E(G)$ we have $f(A \cup B) + f(A \cap B) \le f(A) + f(B)$
 - ▶ Monotone: for all $A \subseteq B \subseteq E(G)$ we have $f(A) \le f(B)$

SHORTEST SUBMODULAR CYCLE

Input: Graph *G* and a monotone submodular function $f: 2^{E(G)} \to \mathbb{R}_{\geq 0}$.

Output: Cycle $C \subseteq E(G)$ of G that minimizes f(C).

Theorem

There is a $n^{\mathcal{O}(\log 1/\varepsilon)}$ time $(1+\varepsilon)$ -approximation algorithm for shortest submodular cycle

- Let $f: 2^{E(G)} \to \mathbb{R}_{\geq 0}$ be a monotone submodular function
 - ▶ Submodular: for all $A, B \subseteq E(G)$ we have $f(A \cup B) + f(A \cap B) \le f(A) + f(B)$
 - ▶ Monotone: for all $A \subseteq B \subseteq E(G)$ we have $f(A) \le f(B)$

SHORTEST SUBMODULAR CYCLE

Input: Graph *G* and a monotone submodular function $f: 2^{E(G)} \to \mathbb{R}_{\geq 0}$.

Output: Cycle $C \subseteq E(G)$ of G that minimizes f(C).

Theorem

There is a $n^{\mathcal{O}(\log 1/\varepsilon)}$ time $(1+\varepsilon)$ -approximation algorithm for shortest submodular cycle

In contrast:

- Let $f: 2^{E(G)} \to \mathbb{R}_{\geq 0}$ be a monotone submodular function
 - ▶ Submodular: for all $A, B \subseteq E(G)$ we have $f(A \cup B) + f(A \cap B) \le f(A) + f(B)$
 - ▶ Monotone: for all $A \subseteq B \subseteq E(G)$ we have $f(A) \le f(B)$

SHORTEST SUBMODULAR CYCLE

Input: Graph *G* and a monotone submodular function $f: 2^{E(G)} \to \mathbb{R}_{\geq 0}$.

Output: Cycle $C \subseteq E(G)$ of G that minimizes f(C).

Theorem

There is a $n^{\mathcal{O}(\log 1/\varepsilon)}$ time $(1+\varepsilon)$ -approximation algorithm for shortest submodular cycle

In contrast:

• Exponential number of queries required to $\mathcal{O}(n^{2/3-\varepsilon})$ -approximate minimum submodular cycle through specified vertex [Goel, Karande, Tripathi, Wang '09]

- Let $f: 2^{E(G)} \to \mathbb{R}_{>0}$ be a monotone submodular function
 - ▶ Submodular: for all $A, B \subseteq E(G)$ we have $f(A \cup B) + f(A \cap B) \le f(A) + f(B)$
 - ▶ Monotone: for all $A \subseteq B \subseteq E(G)$ we have $f(A) \le f(B)$

SHORTEST SUBMODULAR CYCLE

Input: Graph *G* and a monotone submodular function $f: 2^{E(G)} \to \mathbb{R}_{\geq 0}$.

Output: Cycle $C \subseteq E(G)$ of G that minimizes f(C).

Theorem

There is a $n^{\mathcal{O}(\log 1/\varepsilon)}$ time (1 + ε)-approximation algorithm for shortest submodular cycle

In contrast:

- Exponential number of queries required to $\mathcal{O}(n^{2/3-\varepsilon})$ -approximate minimum submodular cycle through specified vertex [Goel, Karande, Tripathi, Wang '09]
- Similar lower bounds also for perfect matching, spanning tree, and (s, t)-cut [Goel, Karande, Tripathi, Wang '09; Jegelka and Bilmes '09]

Theorem

For every ε , at least $n^{\log_2(1/\varepsilon)-\mathcal{O}(1)}$ queries are required to $(1+\varepsilon)$ -approximate shortest submodular cycle.

Theorem

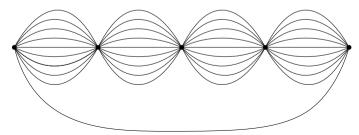
For every ε , at least $n^{\log_2(1/\varepsilon)-\mathcal{O}(1)}$ queries are required to $(1+\varepsilon)$ -approximate shortest submodular cycle.

(i.e., our algorithm is tight for every value of $\boldsymbol{\varepsilon}$)

Theorem

For every ε , at least $n^{\log_2(1/\varepsilon)-\mathcal{O}(1)}$ queries are required to $(1+\varepsilon)$ -approximate shortest submodular cycle.

(i.e., our algorithm is tight for every value of $\boldsymbol{\varepsilon}$)



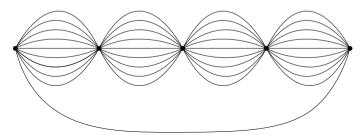
Theorem

For every ε , at least $n^{\log_2(1/\varepsilon)-\mathcal{O}(1)}$ queries are required to $(1+\varepsilon)$ -approximate shortest submodular cycle.

(i.e., our algorithm is tight for every value of ε)

Proof idea:

ullet Let $k=\lfloor \log_2(1/arepsilon)
floor -1$, and let the number of pumpkins be k (here k=4)

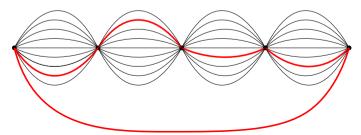


Theorem

For every ε , at least $n^{\log_2(1/\varepsilon)-\mathcal{O}(1)}$ queries are required to $(1+\varepsilon)$ -approximate shortest submodular cycle.

(i.e., our algorithm is tight for every value of ε)

- Let $k = \lfloor \log_2(1/\epsilon) \rfloor 1$, and let the number of pumpkins be k (here k = 4)
- One long cycle of cost $2^k 2 = 14$ and all other cycles cost $2^k 1 = 15$

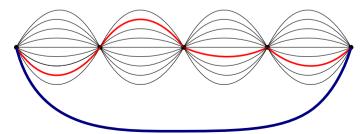


Theorem

For every ε , at least $n^{\log_2(1/\varepsilon)-\mathcal{O}(1)}$ queries are required to $(1+\varepsilon)$ -approximate shortest submodular cycle.

(i.e., our algorithm is tight for every value of ε)

- Let $k = \lfloor \log_2(1/\varepsilon) \rfloor 1$, and let the number of pumpkins be k (here k = 4)
- One long cycle of cost $2^k 2 = 14$ and all other cycles cost $2^k 1 = 15$

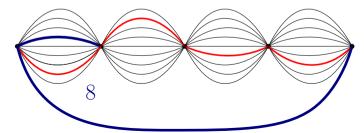


Theorem

For every ε , at least $n^{\log_2(1/\varepsilon)-\mathcal{O}(1)}$ queries are required to $(1+\varepsilon)$ -approximate shortest submodular cycle.

(i.e., our algorithm is tight for every value of ε)

- Let $k = \lfloor \log_2(1/\varepsilon) \rfloor 1$, and let the number of pumpkins be k (here k = 4)
- One long cycle of cost $2^k 2 = 14$ and all other cycles cost $2^k 1 = 15$
- Adding *i*:th edge increases value by 2^{k-i}

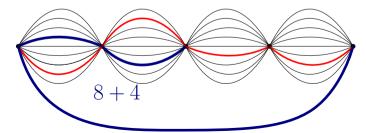


Theorem

For every ε , at least $n^{\log_2(1/\varepsilon)-\mathcal{O}(1)}$ queries are required to $(1+\varepsilon)$ -approximate shortest submodular cycle.

(i.e., our algorithm is tight for every value of ε)

- Let $k = \lfloor \log_2(1/\varepsilon) \rfloor 1$, and let the number of pumpkins be k (here k = 4)
- One long cycle of cost $2^k 2 = 14$ and all other cycles cost $2^k 1 = 15$
- Adding *i*:th edge increases value by 2^{k-i}

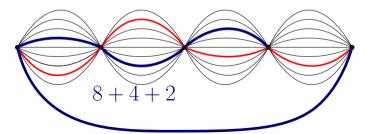


Theorem

For every ε , at least $n^{\log_2(1/\varepsilon)-\mathcal{O}(1)}$ queries are required to $(1+\varepsilon)$ -approximate shortest submodular cycle.

(i.e., our algorithm is tight for every value of $\boldsymbol{\varepsilon})$

- Let $k = \lfloor \log_2(1/\varepsilon) \rfloor 1$, and let the number of pumpkins be k (here k = 4)
- One long cycle of cost $2^k 2 = 14$ and all other cycles cost $2^k 1 = 15$
- Adding *i*:th edge increases value by 2^{k-i}

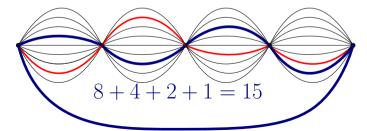


Theorem

For every ε , at least $n^{\log_2(1/\varepsilon)-\mathcal{O}(1)}$ queries are required to $(1+\varepsilon)$ -approximate shortest submodular cycle.

(i.e., our algorithm is tight for every value of $\varepsilon)$

- Let $k = \lfloor \log_2(1/\varepsilon) \rfloor 1$, and let the number of pumpkins be k (here k = 4)
- One long cycle of cost $2^k 2 = 14$ and all other cycles cost $2^k 1 = 15$
- Adding *i*:th edge increases value by 2^{k-i}
- We learn if we made right choices only at the end



EDGE-SUBMODULAR MIN-CUT

Input: Graph *G* and a monotone submodular function $f: 2^{E(G)} \to \mathbb{R}_{\geq 0}$.

Output: Cut $C \subseteq E(G)$ that minimizes f(C).

EDGE-SUBMODULAR MIN-CUT

Input: Graph G and a monotone submodular function $f: 2^{E(G)} \to \mathbb{R}_{\geq 0}$.

Output: Cut $C \subseteq E(G)$ that minimizes f(C).

Duality: Cuts in a planar graph ⇔ cycles in its dual

EDGE-SUBMODULAR MIN-CUT

Input: Graph G and a monotone submodular function $f: 2^{E(G)} \to \mathbb{R}_{\geq 0}$.

Output: Cut $C \subseteq E(G)$ that minimizes f(C).

ullet Duality: Cuts in a planar graph \Leftrightarrow cycles in its dual

Corollary

For planar graphs, there is a $n^{\mathcal{O}(\log 1/\varepsilon)}$ time $(1+\varepsilon)$ -approximation algorithm for edge-submodular min-cut.

EDGE-SUBMODULAR MIN-CUT

Input: Graph G and a monotone submodular function $f: 2^{E(G)} \to \mathbb{R}_{\geq 0}$.

Output: Cut $C \subseteq E(G)$ that minimizes f(C).

 \bullet Duality: Cuts in a planar graph \Leftrightarrow cycles in its dual

Corollary

For planar graphs, there is a $n^{\mathcal{O}(\log 1/\varepsilon)}$ time $(1+\varepsilon)$ -approximation algorithm for edge-submodular min-cut.

• On planar graphs, this generalizes the $n^{\mathcal{O}(\log 1/\varepsilon)}$ -time $1 + \varepsilon$ -approximation of [Ghaffari, Karger & Panigrahi; SODA'17] for colored min-cut

EDGE-SUBMODULAR MIN-CUT

Input: Graph *G* and a monotone submodular function $f: 2^{E(G)} \to \mathbb{R}_{\geq 0}$.

Output: Cut $C \subseteq E(G)$ that minimizes f(C).

ullet Duality: Cuts in a planar graph \Leftrightarrow cycles in its dual

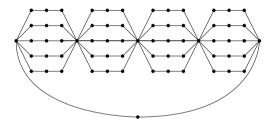
Corollary

For planar graphs, there is a $n^{O(\log 1/\varepsilon)}$ time $(1 + \varepsilon)$ -approximation algorithm for edge-submodular min-cut.

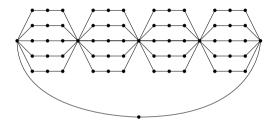
- On planar graphs, this generalizes the $n^{\mathcal{O}(\log 1/\varepsilon)}$ -time $1 + \varepsilon$ -approximation of [Ghaffari, Karger & Panigrahi; SODA'17] for colored min-cut
 - Which was proven to be optimal (for general graphs only!) by [Jaffke, Lima, Masarik, Pilipczuk & Souza; SODA'23]

1. Is there a polynomial-time algorithm for minimum color cycle?

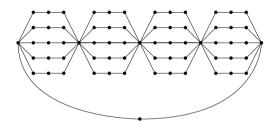
- 1. Is there a polynomial-time algorithm for minimum color cycle?
 - Open even for "pumpkin graphs"



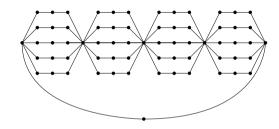
- 1. Is there a polynomial-time algorithm for minimum color cycle?
 - Open even for "pumpkin graphs"
- 2. Can the number of *minimal partial solutions* be superpolynomial?



- Is there a polynomial-time algorithm for minimum color cycle?
 - Open even for "pumpkin graphs"
- 2. Can the number of *minimal partial solutions* be superpolynomial?
- 3. Is there $f(OPT) \cdot n^{\mathcal{O}(1)}$ time algorithm for minimum color cycle?



- Is there a polynomial-time algorithm for minimum color cycle?
 - Open even for "pumpkin graphs"
- 2. Can the number of *minimal partial solutions* be superpolynomial?
- 3. Is there $f(OPT) \cdot n^{\mathcal{O}(1)}$ time algorithm for minimum color cycle?



Thank you!