Dynamic Treewidth in Logarithmic Time

Tuukka Korhonen

IBS DIMAG seminar

9 December 2025

 Setting: Design a data structure that maintains a graph G and supports the following operations:

- Setting: Design a data structure that maintains a graph G and supports the following operations:
 - 1. Initialize(*n*): Create *G* as an edgeless *n*-vertex graph
 - 2. Insert(u, v): Insert an edge between u and v
 - 3. Delete (u, v): Delete an edge between u and v
 - 4. Query: Ask something about the graph G

- Setting: Design a data structure that maintains a graph G and supports the following operations:
 - 1. Initialize(*n*): Create *G* as an edgeless *n*-vertex graph
 - 2. Insert(u, v): Insert an edge between u and v
 - 3. Delete (u, v): Delete an edge between u and v
 - 4. Query: Ask something about the graph G

Question

Can we support the operations faster than by re-computing from scratch every time?

- Setting: Design a data structure that maintains a graph G and supports the following operations:
 - 1. Initialize(*n*): Create *G* as an edgeless *n*-vertex graph
 - 2. Insert(u, v): Insert an edge between u and v
 - 3. Delete (u, v): Delete an edge between u and v
 - 4. Query: Ask something about the graph G

Question

Can we support the operations faster than by re-computing from scratch every time?

- Setting: Design a data structure that maintains a graph G and supports the following operations:
 - 1. Initialize(n): Create G as an edgeless n-vertex graph
 - 2. Insert(u, v): Insert an edge between u and v
 - 3. Delete (u, v): Delete an edge between u and v
 - 4. Query: Ask something about the graph G

Question

Can we support the operations faster than by re-computing from scratch every time?

Example: Connectivity (Query: Are s and t in the same connected component?)

1. Naive: $\mathcal{O}(m)$ worst-case time per operation

- Setting: Design a data structure that maintains a graph G and supports the following operations:
 - 1. Initialize(*n*): Create *G* as an edgeless *n*-vertex graph
 - 2. Insert(u, v): Insert an edge between u and v
 - 3. Delete (u, v): Delete an edge between u and v
 - 4. Query: Ask something about the graph G

Question

Can we support the operations faster than by re-computing from scratch every time?

- 1. Naive: $\mathcal{O}(m)$ worst-case time per operation
- 2. Union-find: $\mathcal{O}(\alpha(n))$ amortized time per operation, but deletions not allowed [Tarjan'75]

- Setting: Design a data structure that maintains a graph G and supports the following operations:
 - 1. Initialize(*n*): Create *G* as an edgeless *n*-vertex graph
 - 2. Insert(u, v): Insert an edge between u and v
 - 3. Delete (u, v): Delete an edge between u and v
 - 4. Query: Ask something about the graph G

Question

Can we support the operations faster than by re-computing from scratch every time?

- 1. Naive: $\mathcal{O}(m)$ worst-case time per operation
- 2. Union-find: $\mathcal{O}(\alpha(n))$ amortized time per operation, but deletions not allowed [Tarjan'75]
- 3. Link/cut tree: $\mathcal{O}(\log n)$ amortized time when G is a forest [Sleator&Tarjan'81]

- Setting: Design a data structure that maintains a graph G and supports the following operations:
 - 1. Initialize(*n*): Create *G* as an edgeless *n*-vertex graph
 - 2. Insert(u, v): Insert an edge between u and v
 - 3. Delete (u, v): Delete an edge between u and v
 - 4. Query: Ask something about the graph G

Question

Can we support the operations faster than by re-computing from scratch every time?

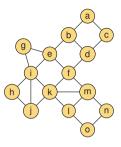
- 1. Naive: $\mathcal{O}(m)$ worst-case time per operation
- 2. Union-find: $\mathcal{O}(\alpha(n))$ amortized time per operation, but deletions not allowed [Tarjan'75]
- 3. Link/cut tree: $\mathcal{O}(\log n)$ amortized time when G is a forest [Sleator&Tarjan'81] (optimal)

- Setting: Design a data structure that maintains a graph G and supports the following operations:
 - 1. Initialize(*n*): Create *G* as an edgeless *n*-vertex graph
 - 2. Insert(u, v): Insert an edge between u and v
 - 3. Delete (u, v): Delete an edge between u and v
 - 4. Query: Ask something about the graph G

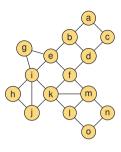
Question

Can we support the operations faster than by re-computing from scratch every time?

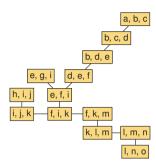
- 1. Naive: $\mathcal{O}(m)$ worst-case time per operation
- 2. Union-find: $\mathcal{O}(\alpha(n))$ amortized time per operation, but deletions not allowed [Tarjan'75]
- 3. Link/cut tree: $\mathcal{O}(\log n)$ amortized time when G is a forest [Sleator&Tarjan'81] (optimal)
- 4. [Henzinger&King'99]: $\mathcal{O}(\log^3 n)$ amortized time



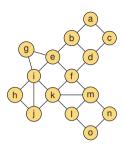
Graph G



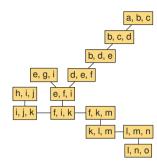
Graph G



A tree decomposition of G

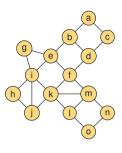


Graph G



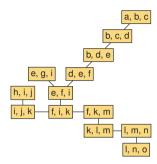
A tree decomposition of G

1. Every vertex should be in a bag

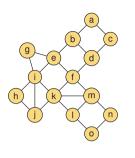


Graph G

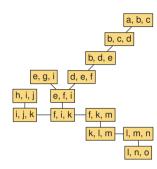
- 1. Every vertex should be in a bag
- 2. Every edge should be in a bag



A tree decomposition of G

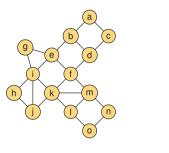


Graph G

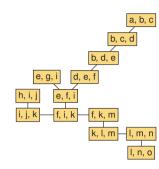


A tree decomposition of G

- 1. Every vertex should be in a bag
- 2. Every edge should be in a bag
- 3. For every vertex v, the bags containing v should form a connected subtree

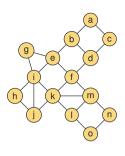


Graph *G*

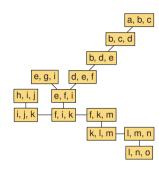


A tree decomposition of G

- 1. Every vertex should be in a bag
- 2. Every edge should be in a bag
- 3. For every vertex v, the bags containing v should form a connected subtree
- 4. Width = maximum bag size -1

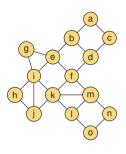


Graph G

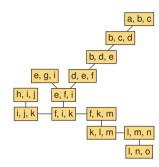


A tree decomposition of GWidth = 2

- 1. Every vertex should be in a bag
- 2. Every edge should be in a bag
- 3. For every vertex v, the bags containing v should form a connected subtree
- 4. Width = maximum bag size -1

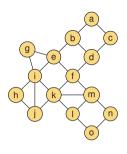


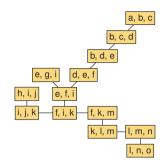
Graph G



A tree decomposition of GWidth = 2

- 1. Every vertex should be in a bag
- 2. Every edge should be in a bag
- 3. For every vertex v, the bags containing v should form a connected subtree
- 4. Width = maximum bag size -1
- 5. Treewidth of G = minimum width of tree decomposition of G

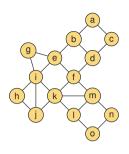


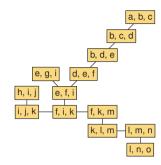


Graph *G*Treewidth 2

A tree decomposition of GWidth = 2

- 1. Every vertex should be in a bag
- 2. Every edge should be in a bag
- 3. For every vertex v, the bags containing v should form a connected subtree
- 4. Width = maximum bag size -1
- 5. Treewidth of G = minimum width of tree decomposition of G





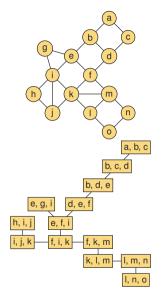
Graph *G*Treewidth 2

A tree decomposition of GWidth = 2

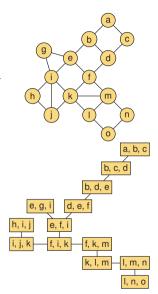
- 1. Every vertex should be in a bag
- 2. Every edge should be in a bag
- 3. For every vertex v, the bags containing v should form a connected subtree
- Width = maximum bag size −1
- 5. Treewidth of G = minimum width of tree decomposition of G

[Robertson & Seymour'84, Arnborg & Proskurowski'89, Bertele & Brioschi'72, Halin'76]

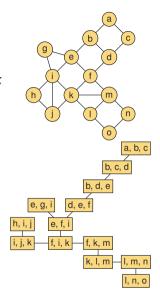
 Algorithms for trees often generalize to algorithms for graphs of small treewidth



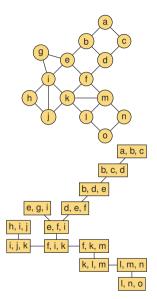
- Algorithms for trees often generalize to algorithms for graphs of small treewidth
- Example: Maximum independent set in $\mathcal{O}(2^k \cdot n)$ time on treewidth-k graphs



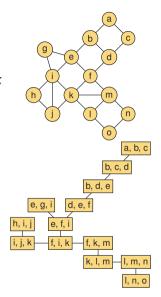
- Algorithms for trees often generalize to algorithms for graphs of small treewidth
- Example: Maximum independent set in $\mathcal{O}(2^k \cdot n)$ time on treewidth-k graphs
- Courcelle's theorem gives $f(k) \cdot n$ time algorithms for all problems definable in **MSO**-logic



- Algorithms for trees often generalize to algorithms for graphs of small treewidth
- Example: Maximum independent set in $\mathcal{O}(2^k \cdot n)$ time on treewidth-k graphs
- Courcelle's theorem gives $f(k) \cdot n$ time algorithms for all problems definable in **MSO**-logic
- Need the tree decomposition!



- Algorithms for trees often generalize to algorithms for graphs of small treewidth
- Example: Maximum independent set in $\mathcal{O}(2^k \cdot n)$ time on treewidth-k graphs
- Courcelle's theorem gives $f(k) \cdot n$ time algorithms for all problems definable in **MSO**-logic
- Need the tree decomposition!
 - ≥ 2^{O(k³)} n time algorithm to compute an optimum-width tree decomposition [Bodlaender '96]
 - ▶ $2^{O(k)}n$ time for 2-approximation [K. '21]
 - ▶ $n^{\mathcal{O}(1)}$ time for $\mathcal{O}(\sqrt{\log k})$ -approximation [Feige, Hajiaghayi, Lee'08]



Question [Bodlaender '93, Dvořák, Kupec & Tůma '14, Alman, Mnich & Vassilevska Williams '20]

Can we efficiently maintain a tree decomposition of a dynamic graph with bounded treewidth?

Question [Bodlaender '93, Dvořák, Kupec & Tůma '14, Alman, Mnich & Vassilevska Williams '20]

Can we efficiently maintain a tree decomposition of a dynamic graph with bounded treewidth?

 Would also like to maintain any "finite-state" dynamic programming scheme on the tree decomposition (dynamic Courcelle's theorem)

Question [Bodlaender '93, Dvořák, Kupec & Tůma '14, Alman, Mnich & Vassilevska Williams '20]

Can we efficiently maintain a tree decomposition of a dynamic graph with bounded treewidth?

 Would also like to maintain any "finite-state" dynamic programming scheme on the tree decomposition (dynamic Courcelle's theorem)

Question [Bodlaender '93, Dvořák, Kupec & Tůma '14, Alman, Mnich & Vassilevska Williams '20]

Can we efficiently maintain a tree decomposition of a dynamic graph with bounded treewidth?

 Would also like to maintain any "finite-state" dynamic programming scheme on the tree decomposition (dynamic Courcelle's theorem)

Previous work:

• Treewidth-1 (dynamic forests): $\mathcal{O}(\log n)$ update time [Sleator & Tarjan'83, Frederickson'85,97, Alstrup, Holm, de Lichtenberg, Thorup'05...]

Question [Bodlaender '93, Dvořák, Kupec & Tůma '14, Alman, Mnich & Vassilevska Williams '20]

Can we efficiently maintain a tree decomposition of a dynamic graph with bounded treewidth?

 Would also like to maintain any "finite-state" dynamic programming scheme on the tree decomposition (dynamic Courcelle's theorem)

- Treewidth-1 (dynamic forests): O(log n) update time [Sleator & Tarjan'83, Frederickson'85,97, Alstrup, Holm, de Lichtenberg, Thorup'05...]
- Treewidth-2: $\mathcal{O}(\log n)$ update time [Bodlaender'93]

Question [Bodlaender '93, Dvořák, Kupec & Tůma '14, Alman, Mnich & Vassilevska Williams '20]

Can we efficiently maintain a tree decomposition of a dynamic graph with bounded treewidth?

 Would also like to maintain any "finite-state" dynamic programming scheme on the tree decomposition (dynamic Courcelle's theorem)

- Treewidth-1 (dynamic forests): $\mathcal{O}(\log n)$ update time [Sleator & Tarjan'83, Frederickson'85,97, Alstrup, Holm, de Lichtenberg, Thorup'05...]
- Treewidth-2: $\mathcal{O}(\log n)$ update time [Bodlaender'93] (writeup missing details)

Question [Bodlaender '93, Dvořák, Kupec & Tůma '14, Alman, Mnich & Vassilevska Williams '20]

Can we efficiently maintain a tree decomposition of a dynamic graph with bounded treewidth?

 Would also like to maintain any "finite-state" dynamic programming scheme on the tree decomposition (dynamic Courcelle's theorem)

- Treewidth-1 (dynamic forests): $\mathcal{O}(\log n)$ update time [Sleator & Tarjan'83, Frederickson'85,97, Alstrup, Holm, de Lichtenberg, Thorup'05...]
- Treewidth-2: $\mathcal{O}(\log n)$ update time [Bodlaender'93] (writeup missing details)
- Treewidth-k: n^{o(1)} amortized update time n^{o(1)}-approximate tree decomposition on bounded-degree graphs. [Goranci, Räcke, Saranurak, Tan '21]

Question [Bodlaender '93, Dvořák, Kupec & Tůma '14, Alman, Mnich & Vassilevska Williams '20]

Can we efficiently maintain a tree decomposition of a dynamic graph with bounded treewidth?

 Would also like to maintain any "finite-state" dynamic programming scheme on the tree decomposition (dynamic Courcelle's theorem)

- Treewidth-1 (dynamic forests): $\mathcal{O}(\log n)$ update time [Sleator & Tarjan'83, Frederickson'85,97, Alstrup, Holm, de Lichtenberg, Thorup'05...]
- Treewidth-2: $\mathcal{O}(\log n)$ update time [Bodlaender'93] (writeup missing details)
- Treewidth-k: n^{o(1)} amortized update time n^{o(1)}-approximate tree decomposition on bounded-degree graphs. [Goranci, Räcke, Saranurak, Tan '21] (not suitable for dynamic Courcelle's theorem)

Question [Bodlaender '93, Dvořák, Kupec & Tůma '14, Alman, Mnich & Vassilevska Williams '20]

Can we efficiently maintain a tree decomposition of a dynamic graph with bounded treewidth?

 Would also like to maintain any "finite-state" dynamic programming scheme on the tree decomposition (dynamic Courcelle's theorem)

- Treewidth-1 (dynamic forests): O(log n) update time [Sleator & Tarjan'83, Frederickson'85,97, Alstrup, Holm, de Lichtenberg, Thorup'05...]
- Treewidth-2: $\mathcal{O}(\log n)$ update time [Bodlaender'93] (writeup missing details)
- Treewidth-k: n^{o(1)} amortized update time n^{o(1)}-approximate tree decomposition on bounded-degree graphs. [Goranci, Räcke, Saranurak, Tan '21] (not suitable for dynamic Courcelle's theorem)
- Treewidth-k: 2^{k^{O(1)}}n^{o(1)} amortized update time 6-approximate tree decomposition. [K., Majewski, Nadara, Pilipczuk, Sokołowski '23]

Question [Bodlaender '93, Dvořák, Kupec & Tůma '14, Alman, Mnich & Vassilevska Williams '20]

Can we efficiently maintain a tree decomposition of a dynamic graph with bounded treewidth?

 Would also like to maintain any "finite-state" dynamic programming scheme on the tree decomposition (dynamic Courcelle's theorem)

Previous work:

- Treewidth-1 (dynamic forests): $\mathcal{O}(\log n)$ update time [Sleator & Tarjan'83, Frederickson'85,97, Alstrup, Holm, de Lichtenberg, Thorup'05...]
- Treewidth-2: $\mathcal{O}(\log n)$ update time [Bodlaender'93] (writeup missing details)
- Treewidth-k: n^{o(1)} amortized update time n^{o(1)}-approximate tree decomposition on bounded-degree graphs. [Goranci, Räcke, Saranurak, Tan '21] (not suitable for dynamic Courcelle's theorem)
- Treewidth-k: 2^{k^{O(1)}}n^{o(1)} amortized update time 6-approximate tree decomposition. [K., Majewski, Nadara, Pilipczuk, Sokołowski '23]

Theorem (This work)

 $2^{\mathcal{O}(k)} \log n$ amortized update time 9-approximate tree decomposition.

Theorem (this work):

Theorem (this work):

There is data structure that

- is initialized with integer *k* and an edgeless *n*-vertex graph *G*
- supports edge insertions/deletions in amortized time $2^{\mathcal{O}(k)} \log n$ under the promise that $\mathrm{tw}(G) \leq k$
- maintains a tree decomposition of G of width at most 9 · tw(G) + 8

Theorem (this work):

There is data structure that

- is initialized with integer *k* and an edgeless *n*-vertex graph *G*
- supports edge insertions/deletions in amortized time $2^{\mathcal{O}(k)} \log n$ under the promise that $\mathrm{tw}(G) \leq k$
- maintains a tree decomposition of G of width at most $9 \cdot tw(G) + 8$
- can also maintain any dynamic programming scheme on the decomposition within similar running time (formalized by tree decomposition automata)

Theorem (this work):

There is data structure that

- is initialized with integer k and an edgeless n-vertex graph G
- supports edge insertions/deletions in amortized time $2^{\mathcal{O}(k)} \log n$ under the promise that $\mathrm{tw}(G) \leq k$
- maintains a tree decomposition of G of width at most $9 \cdot tw(G) + 8$
- can also maintain any dynamic programming scheme on the decomposition within similar running time (formalized by tree decomposition automata)
- \Rightarrow Dynamic Courcelle's theorem in $f(k) \cdot \log n$ amortized update time

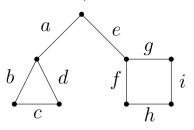
• $f(k) \cdot m^{1+o(1)}$ time algorithm for k-disjoint paths and H-minor-containment [K., Pilipczuk, Stamoulis, '24]

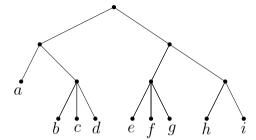
- $f(k) \cdot m^{1+o(1)}$ time algorithm for k-disjoint paths and H-minor-containment [K., Pilipczuk, Stamoulis, '24]
- Dynamic rankwidth \Rightarrow rankwidth in $f(k) \cdot n^{1+o(1)} + \mathcal{O}(m)$ time [K., Sokolowski, '24]

- $f(k) \cdot m^{1+o(1)}$ time algorithm for k-disjoint paths and H-minor-containment [K., Pilipczuk, Stamoulis, '24]
- Dynamic rankwidth \Rightarrow rankwidth in $f(k) \cdot n^{1+o(1)} + \mathcal{O}(m)$ time [K., Sokolowski, '24]
- Dynamic kernelization with $\mathcal{O}(\log n)$ amortized update time, e.g., for planar dominating set [Bertram, Haun, Jensen, K., '25]

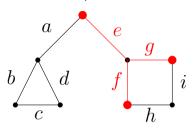
The algorithm

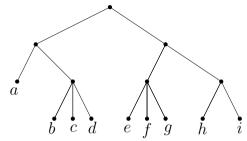
The algorithm



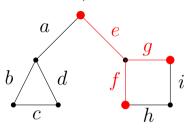


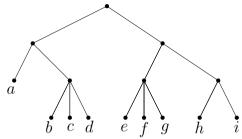
• Branch decomposition: Rooted tree whose leaves correspond to the edges of the graph



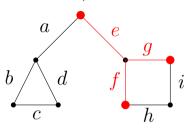


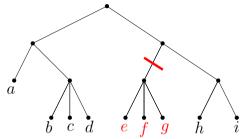
- Branch decomposition: Rooted tree whose leaves correspond to the edges of the graph
- Boundary $\partial(F)$ of a set of edges $F \subseteq E$: The vertices incident to edges from both F and $E \setminus F$.



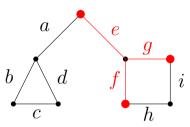


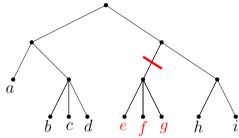
- Branch decomposition: Rooted tree whose leaves correspond to the edges of the graph
- Boundary $\partial(F)$ of a set of edges $F \subseteq E$: The vertices incident to edges from both F and $E \setminus F$.
- A set of edges $F \subseteq E$ is well-linked if it cannot be partitioned to (C_1, C_2) so that $|\partial(C_1)| < |\partial(F)|$ and $|\partial(C_2)| < |\partial(F)|$



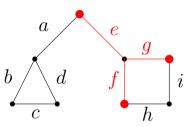


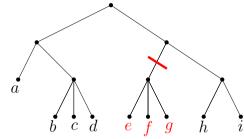
- Branch decomposition: Rooted tree whose leaves correspond to the edges of the graph
- Boundary $\partial(F)$ of a set of edges $F \subseteq E$: The vertices incident to edges from both F and $E \setminus F$.
- A set of edges $F \subseteq E$ is well-linked if it cannot be partitioned to (C_1, C_2) so that $|\partial(C_1)| < |\partial(F)|$ and $|\partial(C_2)| < |\partial(F)|$
- Want to maintain: Every edge set corresponding to a subtree is well-linked "downwards well-linkedness"



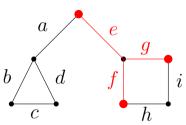


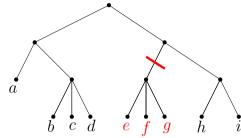
- Branch decomposition: Rooted tree whose leaves correspond to the edges of the graph
- Boundary $\partial(F)$ of a set of edges $F \subseteq E$: The vertices incident to edges from both F and $E \setminus F$.
- A set of edges $F \subseteq E$ is well-linked if it cannot be partitioned to (C_1, C_2) so that $|\partial(C_1)| < |\partial(F)|$ and $|\partial(C_2)| < |\partial(F)|$
- Want to maintain: Every edge set corresponding to a subtree is well-linked "downwards well-linkedness" \Rightarrow Boundaries have size $\mathcal{O}(k)$



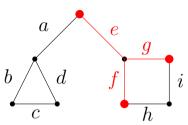


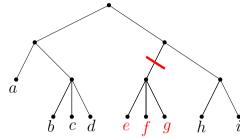
- Branch decomposition: Rooted tree whose leaves correspond to the edges of the graph
- Boundary $\partial(F)$ of a set of edges $F \subseteq E$: The vertices incident to edges from both F and $E \setminus F$.
- A set of edges $F \subseteq E$ is well-linked if it cannot be partitioned to (C_1, C_2) so that $|\partial(C_1)| < |\partial(F)|$ and $|\partial(C_2)| < |\partial(F)|$
- Want to maintain: Every edge set corresponding to a subtree is well-linked "downwards well-linkedness" \Rightarrow Boundaries have size $\mathcal{O}(k)$
- Also: Degree at most $2^{\mathcal{O}(k)}$





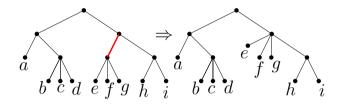
- Branch decomposition: Rooted tree whose leaves correspond to the edges of the graph
- Boundary $\partial(F)$ of a set of edges $F \subseteq E$: The vertices incident to edges from both F and $E \setminus F$.
- A set of edges $F \subseteq E$ is well-linked if it cannot be partitioned to (C_1, C_2) so that $|\partial(C_1)| < |\partial(F)|$ and $|\partial(C_2)| < |\partial(F)|$
- Want to maintain: Every edge set corresponding to a subtree is well-linked "downwards well-linkedness"
 ⇒ Boundaries have size O(k)
- Also: Degree at most $2^{\mathcal{O}(k)}$
 - \Rightarrow Corresponds to a tree decomposition of width $2^{\mathcal{O}(k)}$ (later optimize to $\mathcal{O}(k)$)



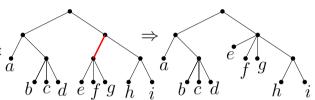


- Branch decomposition: Rooted tree whose leaves correspond to the edges of the graph
- Boundary $\partial(F)$ of a set of edges $F \subseteq E$: The vertices incident to edges from both F and $E \setminus F$.
- A set of edges $F \subseteq E$ is well-linked if it cannot be partitioned to (C_1, C_2) so that $|\partial(C_1)| < |\partial(F)|$ and $|\partial(C_2)| < |\partial(F)|$
- Want to maintain: Every edge set corresponding to a subtree is well-linked "downwards well-linkedness" \Rightarrow Boundaries have size $\mathcal{O}(k)$
- Also: Degree at most $2^{\mathcal{O}(k)}$
 - \Rightarrow Corresponds to a tree decomposition of width $2^{\mathcal{O}(k)}$ (later optimize to $\mathcal{O}(k)$)
- Depth at most $2^{O(k)} \log n$

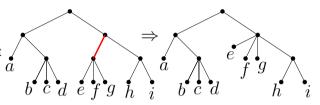
1. **Contraction**: Given an edge *uv* of the decomposition, contract it.

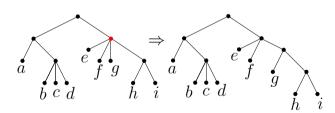


- 1. **Contraction**: Given an edge *uv* of the decomposition, contract it.
 - Maintains downwards well-linkedness, but increases degree

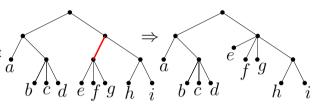


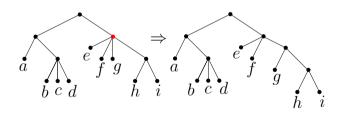
- 1. **Contraction**: Given an edge *uv* of the decomposition, contract it.
 - Maintains downwards well-linkedness, but increases degree
- 2. **Splitting**: Given a node of degree $> f(k) = 2^{O(k)}$, locally split it to multiple nodes



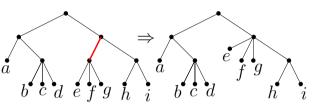


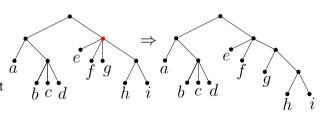
- 1. **Contraction**: Given an edge *uv* of the decomposition, contract it.
 - Maintains downwards well-linkedness, but increases degree
- 2. **Splitting**: Given a node of degree $> f(k) = 2^{O(k)}$, locally split it to multiple nodes
 - Lemma: Can be done so that downwards well-linkedness is maintained





- 1. **Contraction**: Given an edge *uv* of the decomposition, contract it.
 - Maintains downwards well-linkedness, but increases degree
- 2. **Splitting**: Given a node of degree $> f(k) = 2^{O(k)}$, locally split it to multiple nodes
 - Lemma: Can be done so that downwards well-linkedness is maintained
 - Can choose a set of ≤ 3 children that will not drop deeper





• In addition to normal edges, have also self-loops for every vertex

- In addition to normal edges, have also self-loops for every vertex
- To insert an edge *uv*:

- In addition to normal edges, have also self-loops for every vertex
- To insert an edge *uv*:
 - 1. Rotate the self-loops u and v to be children of the root
 - 2. Insert uv as an additional child of the root
 - 3. Decomposition is easy to update

- In addition to normal edges, have also self-loops for every vertex
- To insert an edge *uv*:
 - 1. Rotate the self-loops u and v to be children of the root
 - 2. Insert uv as an additional child of the root
 - 3. Decomposition is easy to update
- To delete an edge uv:

- In addition to normal edges, have also self-loops for every vertex
- To insert an edge uv:
 - 1. Rotate the self-loops *u* and *v* to be children of the root
 - 2. Insert uv as an additional child of the root
 - 3. Decomposition is easy to update
- To delete an edge uv:
 - 1. Rotate *uv* and the self-loops *u* and *v* to be children of the root
 - 2. Delete uv
 - 3. Decomposition is easy to update

• size(t): Number of leafs below t

- size(t): Number of leafs below t
- Invariant: If b is a descendant of a with distance $> f(k) = 2^{O(k)}$ from a, then size(b) < size(a)/2.

- size(t): Number of leafs below t
- Invariant: If b is a descendant of a with distance $> f(k) = 2^{O(k)}$ from a, then size(b) < size(a)/2.
- Implies depth $\leq 2^{\mathcal{O}(k)} \log n$

- size(t): Number of leafs below t
- Invariant: If b is a descendant of a with distance $> f(k) = 2^{O(k)}$ from a, then size(b) < size(a)/2.
- Implies depth $\leq 2^{\mathcal{O}(k)} \log n$
- Potential-function:

- size(t): Number of leafs below t
- Invariant: If b is a descendant of a with distance $> f(k) = 2^{O(k)}$ from a, then size(b) < size(a)/2.
- Implies depth $\leq 2^{\mathcal{O}(k)} \log n$
- Potential-function:

Lemma

If a pair a, b does not satisfy the invariant, then can decrease the value of $\Phi(T)$ in time proportional to the decrease

- size(t): Number of leafs below t
- Invariant: If b is a descendant of a with distance $> f(k) = 2^{O(k)}$ from a, then size(b) < size(a)/2.
- Implies depth $\leq 2^{\mathcal{O}(k)} \log n$
- Potential-function:
 - $\Phi(t) = (\text{degree}(t) 2) \cdot \log(\text{size}(t))$

Lemma

If a pair a, b does not satisfy the invariant, then can decrease the value of $\Phi(T)$ in time proportional to the decrease

Lemma

Edge insertion and deletion increase $\Phi(T)$ by $2^{\mathcal{O}(k)} \log n$

• $2^{\mathcal{O}(k)} \log n$ amortized update time for maintaining a tree decomposition of width at most 9k + 8 of a dynamic graph of treewidth $\leq k$

- $2^{\mathcal{O}(k)} \log n$ amortized update time for maintaining a tree decomposition of width at most 9k + 8 of a dynamic graph of treewidth $\leq k$
 - Can also maintain dynamic programming schemes on the tree decomposition

- $2^{\mathcal{O}(k)} \log n$ amortized update time for maintaining a tree decomposition of width at most 9k + 8 of a dynamic graph of treewidth $\leq k$
 - Can also maintain dynamic programming schemes on the tree decomposition
- Open problems:

- $2^{\mathcal{O}(k)} \log n$ amortized update time for maintaining a tree decomposition of width at most 9k + 8 of a dynamic graph of treewidth $\leq k$
 - Can also maintain dynamic programming schemes on the tree decomposition
- Open problems:
 - From amortized to worst-case?

- $2^{\mathcal{O}(k)} \log n$ amortized update time for maintaining a tree decomposition of width at most 9k + 8 of a dynamic graph of treewidth $\leq k$
 - Can also maintain dynamic programming schemes on the tree decomposition
- Open problems:
 - From amortized to worst-case?
 - ▶ Can we rule out $f(k) + O(\log n)$ update time?

- $2^{\mathcal{O}(k)} \log n$ amortized update time for maintaining a tree decomposition of width at most 9k + 8 of a dynamic graph of treewidth $\leq k$
 - Can also maintain dynamic programming schemes on the tree decomposition
- Open problems:
 - From amortized to worst-case?
 - ▶ Can we rule out $f(k) + O(\log n)$ update time?
 - Improve approximation ratio (3 seems to be a lower bound for explicitly maintaining a tree decomposition)

- $2^{\mathcal{O}(k)} \log n$ amortized update time for maintaining a tree decomposition of width at most 9k + 8 of a dynamic graph of treewidth $\leq k$
 - Can also maintain dynamic programming schemes on the tree decomposition
- Open problems:
 - From amortized to worst-case?
 - ▶ Can we rule out $f(k) + O(\log n)$ update time?
 - Improve approximation ratio (3 seems to be a lower bound for explicitly maintaining a tree decomposition)

Thank you!