Fast FPT-Approximation of Branchwidth

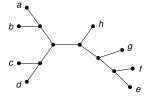
Fedor V. Fomin, <u>Tuukka Korhonen</u>

University of Bergen, Norway

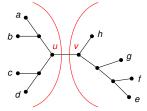
Parametrized complexity and discrete optimization December 10, 2021

- Let V be a set and $f: 2^V \to \mathbb{Z}_{\geq 0}$ a symmetric set function.
 - ▶ Symmetric: For any $A \subseteq V$, it holds that $f(A) = f(\overline{A})$, where $\overline{A} = V \setminus A$

- Let V be a set and $f: 2^V \to \mathbb{Z}_{\geq 0}$ a symmetric set function.
 - ▶ Symmetric: For any $A \subseteq V$, it holds that $f(A) = f(\overline{A})$, where $\overline{A} = V \setminus A$
- Branch decomposition of f is a cubic tree whose leaves correspond to V
- Example with $V = \{a, b, c, d, e, f, g, h\}$:

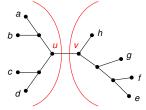


- Let V be a set and $f: 2^V \to \mathbb{Z}_{\geq 0}$ a symmetric set function.
 - ▶ Symmetric: For any $A \subseteq V$, it holds that $f(A) = f(\overline{A})$, where $\overline{A} = V \setminus A$
- Branch decomposition of f is a cubic tree whose leaves correspond to V
- Example with $V = \{a, b, c, d, e, f, g, h\}$:



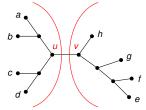
- ullet Each edge of decomposition corresponds to a bipartition of V
- Example: uv corresponds to $(\{a, b, c, d\}, \{e, f, g, h\})$

- Let V be a set and $f: 2^V \to \mathbb{Z}_{>0}$ a symmetric set function.
 - ▶ Symmetric: For any $A \subseteq V$, it holds that $f(A) = f(\overline{A})$, where $\overline{A} = V \setminus A$
- Branch decomposition of f is a cubic tree whose leaves correspond to V
- Example with $V = \{a, b, c, d, e, f, g, h\}$:



- Each edge of decomposition corresponds to a bipartition of V
- Example: uv corresponds to $(\{a, b, c, d\}, \{e, f, g, h\})$
- We denote $f(uv) = f(\{a, b, c, d\}) = f(\{e, f, g, h\})$
- ullet The width of the decomposition is $\max_{uv \in E(T)} f(uv)$

- Let *V* be a set and $f: 2^V \to \mathbb{Z}_{>0}$ a symmetric set function.
 - ▶ Symmetric: For any $A \subseteq V$, it holds that $f(A) = f(\overline{A})$, where $\overline{A} = V \setminus A$
- Branch decomposition of f is a cubic tree whose leaves correspond to V
- Example with $V = \{a, b, c, d, e, f, g, h\}$:



- Each edge of decomposition corresponds to a bipartition of V
- Example: uv corresponds to $(\{a, b, c, d\}, \{e, f, g, h\})$
- We denote $f(uv) = f(\{a, b, c, d\}) = f(\{e, f, g, h\})$
- The width of the decomposition is $\max_{uv \in E(T)} f(uv)$
- The branchwidth of f is minimum width of a branch decomposition of f

Connectivity functions

- Function $f: 2^V \to \mathbb{Z}_{>0}$ is a connectivity function if for any $A, B \subseteq V$:
 - $f(A) = f(\overline{A})$ (symmetric)
 - ► $f(A \cup B) + f(A \cap B) \le f(A) + f(B)$ (submodular)

Connectivity functions

- Function $f: 2^V \to \mathbb{Z}_{>0}$ is a connectivity function if for any $A, B \subseteq V$:
 - $f(A) = f(\overline{A}) \text{ (symmetric)}$
 - ► $f(A \cup B) + f(A \cap B) \le f(A) + f(B)$ (submodular)

Examples:

- Border of an edge set in a graph G:
 - ► For any edge set $A \subseteq E(G)$ let $\delta_G(A)$ be the number of vertices incident to both A and \overline{A} .
 - ▶ The branchwidth of *G* is the branchwidth of δ_G .

Connectivity functions

- Function $f: 2^V \to \mathbb{Z}_{\geq 0}$ is a connectivity function if for any $A, B \subseteq V$:
 - $f(A) = f(\overline{A}) \text{ (symmetric)}$
 - ► $f(A \cup B) + f(A \cap B) \le f(A) + f(B)$ (submodular)

Examples:

- Border of an edge set in a graph G:
 - ▶ For any edge set $A \subseteq E(G)$ let $\delta_G(A)$ be the number of vertices incident to both A and \overline{A} .
 - ▶ The branchwidth of *G* is the branchwidth of δ_G .
- Cut-rank in a graph G:
 - For any vertex set $A \subseteq V(G)$ let $\operatorname{cutrk}_G(A)$ be the GF(2)-rank of the $|A| \times |\overline{A}|$ matrix representing edges between A and \overline{A} .
 - ► The rankwidth of G is the branchwidth of cutrk_G.

 Framework for designing FPT 2-approximation algorithms for branchwidth of connectivity functions

- Framework for designing FPT 2-approximation algorithms for branchwidth of connectivity functions
- Applications:

Theorem

There is a $2^{2^{\mathcal{O}(k)}}n^2$ time 2-approximation algorithm for rankwidth.

- Framework for designing FPT 2-approximation algorithms for branchwidth of connectivity functions
- Applications:

Theorem

There is a $2^{2^{\mathcal{O}(k)}} n^2$ time 2-approximation algorithm for rankwidth.

Theorem

There is a $2^{\mathcal{O}(k)}n$ time 2-approximation algorithm for graph branchwidth.

- Framework for designing FPT 2-approximation algorithms for branchwidth of connectivity functions
- Applications:

Theorem

There is a $2^{2^{\mathcal{O}(k)}} n^2$ time 2-approximation algorithm for rankwidth.

Theorem

There is a $2^{\mathcal{O}(k)}n$ time 2-approximation algorithm for graph branchwidth.

- Rankwidth is more general parameter than treewidth:
 - $ightharpoonup rw(G) \le tw(G) + 1$

- Rankwidth is more general parameter than treewidth:
 - $ightharpoonup rw(G) \le tw(G) + 1$
 - ▶ $tw(G) \ge m/n$, but rankwidth can be bounded for dense graph classes:
 - ► cliques, cographs, distance hereditary graphs, *k*-leaf-powers...

- Rankwidth is more general parameter than treewidth:
 - ▶ $rw(G) \le tw(G) + 1$
 - ▶ $tw(G) \ge m/n$, but rankwidth can be bounded for dense graph classes:
 - ► cliques, cographs, distance hereditary graphs, *k*-leaf-powers...
- Rankwidth is approximately equivalent to cliquewidth, only known way to approximate cliquewidth is via rankwidth

- Rankwidth is more general parameter than treewidth:
 - $ightharpoonup rw(G) \le tw(G) + 1$
 - ▶ $tw(G) \ge m/n$, but rankwidth can be bounded for dense graph classes:
 - ► cliques, cographs, distance hereditary graphs, *k*-leaf-powers...
- Rankwidth is approximately equivalent to cliquewidth, only known way to approximate cliquewidth is via rankwidth

"Courcelle's theorem" for cliquewidth/rankwidth

[Courcelle, Makowsky, and Rotics, 2000], [Oum and Seymour 2006]

Given a graph with a rank decomposition of width k, any MSO_1 -definable problem can be solved in $f(k)n^2$ time

- Rankwidth is more general parameter than treewidth:
 - ightharpoonup rw(G) < tw(G) + 1
 - ▶ $tw(G) \ge m/n$, but rankwidth can be bounded for dense graph classes:
 - ► cliques, cographs, distance hereditary graphs, *k*-leaf-powers...
- Rankwidth is approximately equivalent to cliquewidth, only known way to approximate cliquewidth is via rankwidth

"Courcelle's theorem" for cliquewidth/rankwidth

[Courcelle, Makowsky, and Rotics, 2000], [Oum and Seymour 2006]

Given a graph with a rank decomposition of width k, any ${\bf MSO}_1$ -definable problem can be solved in $f(k)n^2$ time

• Previous best rankwidth approximation algorithm $f(k)n^3$ time [Oum, 2008]

- Rankwidth is more general parameter than treewidth:
 - $ightharpoonup rw(G) \le tw(G) + 1$
 - ▶ $tw(G) \ge m/n$, but rankwidth can be bounded for dense graph classes:
 - ► cliques, cographs, distance hereditary graphs, *k*-leaf-powers...
- Rankwidth is approximately equivalent to cliquewidth, only known way to approximate cliquewidth is via rankwidth

"Courcelle's theorem" for cliquewidth/rankwidth

[Courcelle, Makowsky, and Rotics, 2000], [Oum and Seymour 2006]

Given a graph with a rank decomposition of width k, any ${\bf MSO}_1$ -definable problem can be solved in $f(k)n^2$ time

- Previous best rankwidth approximation algorithm $f(k)n^3$ time [Oum, 2008]
- In this work, improvement to $f(k)n^2$ time.

- Rankwidth is more general parameter than treewidth:
 - $ightharpoonup rw(G) \le tw(G) + 1$
 - ▶ $tw(G) \ge m/n$, but rankwidth can be bounded for dense graph classes:
 - ► cliques, cographs, distance hereditary graphs, *k*-leaf-powers...
- Rankwidth is approximately equivalent to cliquewidth, only known way to approximate cliquewidth is via rankwidth

"Courcelle's theorem" for cliquewidth/rankwidth

[Courcelle, Makowsky, and Rotics, 2000], [Oum and Seymour 2006]

Given a graph with a rank decomposition of width k, any ${\bf MSO}_1$ -definable problem can be solved in $f(k)n^2$ time

- Previous best rankwidth approximation algorithm $f(k)n^3$ time [Oum, 2008]
- In this work, improvement to $f(k)n^2$ time.

Given a graph of rankwidth k, any ${\bf MSO}_1$ -definable problem can be solved in $f(k)n^2$ time

Techniques for rankwidth

Well-known technique: Iterative compression

• Insert vertices one-by-one, maintaining an "augmented" rank decomposition of width $\leq 2_{\text{TW}}(G)$

- Insert vertices one-by-one, maintaining an "augmented" rank decomposition of width $\leq 2 \text{\tiny TW}(\textit{G})$
- Insert one vertex in $2^{\mathcal{O}(rw(G))}n$ time

- Insert vertices one-by-one, maintaining an "augmented" rank decomposition of width $\leq 2 \text{\tiny TW}(\textit{G})$
- Insert one vertex in $2^{\mathcal{O}(rW(G))}n$ time
- Improve width to $\leq 2rw(G)$ in $2^{2^{\mathcal{O}(rw(G))}}n$ time

- Insert vertices one-by-one, maintaining an "augmented" rank decomposition of width $\leq 2 \text{\tiny TW}(\textit{G})$
- Insert one vertex in $2^{\mathcal{O}(rW(G))}n$ time
- Improve width to $\leq 2 \text{rw}(G)$ in $2^{2^{\mathcal{O}(\text{rw}(G))}} n$ time
- Repeat n times $o 2^{2^{\mathcal{O}(\mathfrak{rw}(G))}} n^2$ time algorithm

- Insert vertices one-by-one, maintaining an "augmented" rank decomposition of width $\leq 2 {\tt rw}(\textit{G})$
- Insert one vertex in $2^{\mathcal{O}(rW(G))}n$ time
- Improve width to $\leq 2 {\tt rw}({\it G})$ in $2^{2^{{\cal O}({\tt rw}({\it G}))}} n$ time
- Repeat $n \text{ times} \rightarrow 2^{2^{\mathcal{O}(rw(G))}} n^2$ time algorithm

Input: Augmented rank decomposition of G of width k

Output: Augmented rank decomposition of *G* of width $\leq k-1$ or conclusion $k \leq 2rw(G)$

Time complexity: $2^{2^{\mathcal{O}(k)}}n$

Input: Augmented rank decomposition of *G* of width *k*

Output: Augmented rank decomposition of G of width $\leq k-1$ or conclusion $k \leq 2rw(G)$

Time complexity: $2^{2^{\mathcal{O}(k)}}n$

(Assumes that the graph G is already stored as adjacency matrix)

Input: Augmented rank decomposition of *G* of width *k*

Output: Augmented rank decomposition of G of width $\leq k-1$ or conclusion $k \leq 2rw(G)$

Time complexity: $2^{2^{\mathcal{O}(k)}}n$

(Assumes that the graph G is already stored as adjacency matrix)

Our algorithm

 Is not based on a Robertson-Seymour type idea of building the decomposition top-down

Input: Augmented rank decomposition of *G* of width *k*

Output: Augmented rank decomposition of G of width $\leq k-1$ or conclusion $k \leq 2rw(G)$

Time complexity: $2^{2^{\mathcal{O}(k)}}n$

(Assumes that the graph G is already stored as adjacency matrix)

Our algorithm

- Is not based on a Robertson-Seymour type idea of building the decomposition top-down
- Instead, iteratively improves the given rank decomposition by applying refinement operations

Input: Augmented rank decomposition of *G* of width *k*

Output: Augmented rank decomposition of G of width $\leq k-1$ or conclusion $k \leq 2rw(G)$

Time complexity: $2^{2^{\mathcal{O}(k)}}n$

(Assumes that the graph G is already stored as adjacency matrix)

Our algorithm

- Is not based on a Robertson-Seymour type idea of building the decomposition top-down
- Instead, iteratively improves the given rank decomposition by applying refinement operations
- ullet Combinatorial framework: For any connectivity function f, a branch decomposition of width $> 2 {
 m bw}(f)$ can be improved by refinement operation

Input: Augmented rank decomposition of *G* of width *k*

Output: Augmented rank decomposition of G of width $\leq k-1$ or conclusion $k \leq 2rw(G)$

Time complexity: $2^{2^{\mathcal{O}(k)}}n$

(Assumes that the graph G is already stored as adjacency matrix)

Our algorithm

- Is not based on a Robertson-Seymour type idea of building the decomposition top-down
- Instead, iteratively improves the given rank decomposition by applying refinement operations
- Combinatorial framework: For any connectivity function f, a branch decomposition
 of width > 2bw(f) can be improved by refinement operation
- Algorithmic framework:
 - ▶ Direct computation of refinements by dynamic programming $\rightarrow 2^{2^{\mathcal{O}(k)}} n^2$ time
 - lacktriangle Amortization techniques exploiting combinatorial results $ightarrow 2^{2^{\mathcal{O}(k)}} n$ time

Our framework

Our Framework

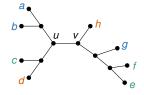
- Setting:
 - ▶ Let $f: 2^V \to \mathbb{Z}_{\geq 0}$ be a connectivity function
 - ▶ We have a branch decomposition *T* of *f* of width *k*
 - ▶ We want to either improve T or conclude $k \le 2bw(f)$

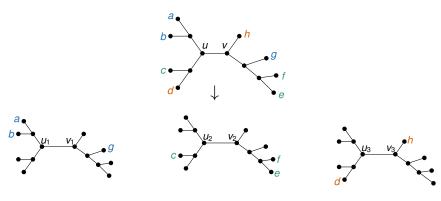
Our Framework

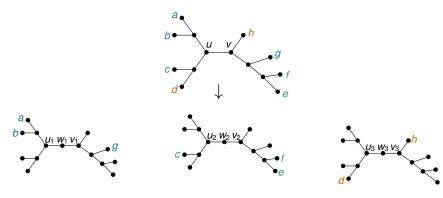
- Setting:
 - ▶ Let $f: 2^V \to \mathbb{Z}_{\geq 0}$ be a connectivity function
 - We have a branch decomposition T of f of width k
 - ▶ We want to either improve T or conclude $k \le 2bw(f)$

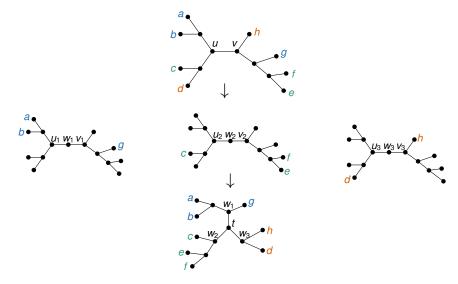
- Our structural result:
 - ▶ An edge uv of the decomposition is heavy if f(uv) = k
 - If k > 2bw(f), then a refinement operation can be applied, which decreases the number of heavy edges and does not increase the width

Specified by 4-tuple (r, C_1, C_2, C_3) , where $r \in E(T)$ and (C_1, C_2, C_3) tripartition of V





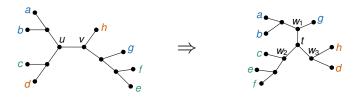




Example with $(r, C_1, C_2, C_3) = (uv, \{a, b, g\}, \{c, e, f\}, \{d, h\})$



• Observation 1: For each i, there will be an edge $w_i t$ corresponding to $(C_i, \overline{C_i})$



- Observation 1: For each i, there will be an edge $w_i t$ corresponding to $(C_i, \overline{C_i})$
 - ► (Except when *C_i* is empty)

- Observation 1: For each i, there will be an edge $w_i t$ corresponding to $(C_i, \overline{C_i})$
 - ► (Except when *C_i* is empty)
- Let $(W, \overline{W}) = (\{a, b, c, d\}, \{e, f, g, h\})$ be the cut of uv

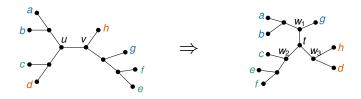
- Observation 1: For each i, there will be an edge $w_i t$ corresponding to $(C_i, \overline{C_i})$ • (Except when C_i is empty)
 - (Except when C_i is empty)
- Let $(W, \overline{W}) = (\{a, b, c, d\}, \{e, f, g, h\})$ be the cut of uv
- Observation 2: For each i, there will be edges corresponding to $(C_i \cap W, \overline{C_i \cap W})$ and $(C_i \cap \overline{W}, \overline{C_i \cap \overline{W}})$

Local Improvement

- Let $(W, \overline{W}) = (\{a, b, c, d\}, \{e, f, g, h\})$ be the cut of uv
- Combination of Observation 1 and 2:
 - ▶ The widths of edges "near the center" will be $f(C_i)$, $f(C_i \cap W)$, and $f(C_i \cap \overline{W})$ for each i

Local Improvement

Example with $(r, C_1, C_2, C_3) = (uv, \{a, b, g\}, \{c, e, f\}, \{d, h\})$



- Let $(W, \overline{W}) = (\{a, b, c, d\}, \{e, f, g, h\})$ be the cut of uv
- Combination of Observation 1 and 2:
 - ▶ The widths of edges "near the center" will be $f(C_i)$, $f(C_i \cap W)$, and $f(C_i \cap \overline{W})$ for each i

Theorem

For any set $W \subseteq V$ with $f(W) > 2b_W(f)$ there exists tripartition (C_1, C_2, C_3) of V so that for each i it holds that $f(C_i) < f(W)/2$, $f(C_i \cap W) < f(W)$, and $f(C_i \cap \overline{W}) < f(W)$.

Local Improvement

Example with $(r, C_1, C_2, C_3) = (uv, \{a, b, g\}, \{c, e, f\}, \{d, h\})$

- Let $(W, \overline{W}) = (\{a, b, c, d\}, \{e, f, g, h\})$ be the cut of uv
- Combination of Observation 1 and 2:
 - ▶ The widths of edges "near the center" will be $f(C_i)$, $f(C_i \cap W)$, and $f(C_i \cap \overline{W})$ for each i

Theorem

For any set $W \subseteq V$ with $f(W) > 2 \bowtie_W(f)$ there exists tripartition (C_1, C_2, C_3) of V so that for each i it holds that $f(C_i) < f(W)/2$, $f(C_i \cap W) < f(W)$, and $f(C_i \cap \overline{W}) < f(W)$.

 \Rightarrow If f(uv) > 2bw(f), there exists refinement with uv that locally improves T

• Let $uv \in E(T)$, (W, \overline{W}) the cut of uv, and f(uv) = k

- Let $uv \in E(T)$, (W, \overline{W}) the cut of uv, and f(uv) = k
- W-improvement is any tripartition of (C_1, C_2, C_3) of V with
 - 1. $f(C_i) < f(W)/2$
 - $2. \ f(C_i \cap W) < f(W)$
 - $3. \ f(C_i \cap \overline{W}) < f(W)$

- Let $uv \in E(T)$, (W, \overline{W}) the cut of uv, and f(uv) = k
- W-improvement is any tripartition of (C_1, C_2, C_3) of V with
 - 1. $f(C_i) < f(W)/2$
 - $2. \ f(C_i \cap W) < f(W)$
 - $3. \ f(C_i \cap \overline{W}) < f(W)$
- Recall: If f(uv) > 2bw(f), then W-improvement exists

- Let $uv \in E(T)$, (W, \overline{W}) the cut of uv, and f(uv) = k
- W-improvement is any tripartition of (C_1, C_2, C_3) of V with
 - 1. $f(C_i) < f(W)/2$
 - $2. \ f(C_i \cap W) < f(W)$
 - $3. \ f(C_i \cap \overline{W}) < f(W)$
- Recall: If f(uv) > 2bw(f), then W-improvement exists

Theorem

If there exists a W-improvement, then there exists a W-improvement (C_1 , C_2 , C_3) so that refinement with (uv, C_1 , C_2 , C_3) does not increase width and decreases number of edges of width k.

- Let $uv \in E(T)$, (W, \overline{W}) the cut of uv, and f(uv) = k
- W-improvement is any tripartition of (C_1, C_2, C_3) of V with
 - 1. $f(C_i) < f(W)/2$
 - $2. \ f(C_i \cap W) < f(W)$
 - $3. \ f(C_i \cap \overline{W}) < f(W)$
- Recall: If f(uv) > 2bw(f), then W-improvement exists

Theorem

If there exists a W-improvement, then there exists a W-improvement (C_1, C_2, C_3) so that refinement with (uv, C_1, C_2, C_3) does not increase width and decreases number of edges of width k.

 Such W-improvement can be found by selecting a W-improvement that optimizes some explicit criteria among all W-improvements

- Let $uv \in E(T)$, (W, \overline{W}) the cut of uv, and f(uv) = k
- W-improvement is any tripartition of (C_1, C_2, C_3) of V with
 - 1. $f(C_i) < f(W)/2$
 - $2. \ f(C_i \cap W) < f(W)$
 - $3. \ f(C_i \cap \overline{W}) < f(W)$
- Recall: If f(uv) > 2bw(f), then W-improvement exists

Theorem

If there exists a W-improvement, then there exists a W-improvement (C_1, C_2, C_3) so that refinement with (uv, C_1, C_2, C_3) does not increase width and decreases number of edges of width k.

- Such W-improvement can be found by selecting a W-improvement that optimizes some explicit criteria among all W-improvements
 - i.e., primarily minimize max_i f(C_i), secondarily minimize number of non-empty C_i, tertiarily...

First Algorithm

- Now, we have a following meta-algorithm for connectivity functions that allow efficient dynamic programming
- 1. Let T have width k, select edge uv with f(uv) = k
- 2. Root T at uv
- 3. Use dynamic programming on T to find a W-improvement optimizing the criteria or conclude $k \le 2b_W(f)$ if no W-improvement found
- 4. Refine T using the W-improvement
- 5. Repeat until the width of *T* decreases (at most *n* iterations)

First Algorithm

- Now, we have a following meta-algorithm for connectivity functions that allow efficient dynamic programming
- 1. Let T have width k, select edge uv with f(uv) = k
- 2. Root T at uv
- 3. Use dynamic programming on T to find a W-improvement optimizing the criteria or conclude $k \le 2b_W(f)$ if no W-improvement found
- 4. Refine *T* using the *W*-improvement
- 5. Repeat until the width of *T* decreases (at most *n* iterations)
- \Rightarrow Time complexity $t(k) \cdot n^2$ to decrease the width by one, where t(k) is the time complexity of dynamic programming per node

First Algorithm

- Now, we have a following meta-algorithm for connectivity functions that allow efficient dynamic programming
- 1. Let T have width k, select edge uv with f(uv) = k
- 2. Root T at uv
- 3. Use dynamic programming on T to find a W-improvement optimizing the criteria or conclude $k \le 2bw(f)$ if no W-improvement found
- 4. Refine *T* using the *W*-improvement
- 5. Repeat until the width of *T* decreases (at most *n* iterations)
- \Rightarrow Time complexity $t(k) \cdot n^2$ to decrease the width by one, where t(k) is the time complexity of dynamic programming per node
 - Too slow! Applications require $t(k) \cdot n$

Example with $(r, C_1, C_2, C_3) = (uv, \{a, b, g\}, \{c, e, f\}, \{d, h\})$

• Consider T rooted at r = uv

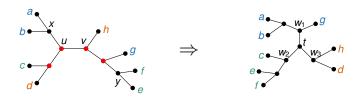
- Consider T rooted at r = uv
- For a node $x \in V(T)$, denote by $T_r[x] \subseteq V$ the leaves in the subtree below x Example: $T_r[x] = \{a, b\}$ and $T_r[y] = \{e, t\}$

- Consider T rooted at r = uv
- For a node $x \in V(T)$, denote by $T_r[x] \subseteq V$ the leaves in the subtree below x Example: $T_r[x] = \{a, b\}$ and $T_r[y] = \{e, t\}$
- Observation: If $T_r[x] \subseteq C_i$, then the subtree of x appears identically in refinement

- Consider T rooted at r = uv
- For a node $x \in V(T)$, denote by $T_r[x] \subseteq V$ the leaves in the subtree below x Example: $T_r[x] = \{a, b\}$ and $T_r[y] = \{e, t\}$
- Observation: If $T_r[x] \subseteq C_i$, then the subtree of x appears identically in refinement
- Call the nodes for which this does not happen the edit set R of the refinement

- Consider T rooted at r = uv
- For a node $x \in V(T)$, denote by $T_r[x] \subseteq V$ the leaves in the subtree below x Example: $T_r[x] = \{a, b\}$ and $T_r[y] = \{e, t\}$
- Observation: If $T_r[x] \subseteq C_i$, then the subtree of x appears identically in refinement
- Call the nodes for which this does **not** happen the *edit set R* of the refinement
 - R forms a connected subtree around uv, and refinement can be implemented by removing R and inserting |R| nodes in its place

- Consider T rooted at r = uv
- For a node x ∈ V(T), denote by T_r[x] ⊆ V the leaves in the subtree below x
 Example: T_r[x] = {a, b} and T_r[y] = {e, f}
- Observation: If $T_r[x] \subseteq C_i$, then the subtree of x appears identically in refinement
- Call the nodes for which this does **not** happen the *edit set R* of the refinement
 - R forms a connected subtree around uv, and refinement can be implemented by removing R and inserting |R| nodes in its place
 - ▶ Over sequence of refinements, it holds that $\sum |R| \le \mathcal{O}(3^k \cdot k \cdot n)$



- Consider T rooted at r = uv
- For a node $x \in V(T)$, denote by $T_r[x] \subseteq V$ the leaves in the subtree below x Example: $T_r[x] = \{a, b\}$ and $T_r[y] = \{e, t\}$
- Observation: If $T_r[x] \subseteq C_i$, then the subtree of x appears identically in refinement
- Call the nodes for which this does **not** happen the *edit set R* of the refinement
 - ightharpoonup R forms a connected subtree around uv, and refinement can be implemented by removing R and inserting |R| nodes in its place
 - ▶ Over sequence of refinements, it holds that $\sum |R| \le \mathcal{O}(3^k \cdot k \cdot n)$
 - \Rightarrow Time complexity $t(k)2^{\mathcal{O}(k)}n$ for connectivity functions with t(k) time dynamic programming per node

Conclusion

• Framework for 2-approximating branchwidth of connectivity functions

Conclusion

Framework for 2-approximating branchwidth of connectivity functions

- Main application: $2^{2^{\mathcal{O}(k)}} n^2$ time 2-approximation algorithm for rankwidth
 - ightharpoonup Solves the open problem of breaking the n^3 barrier for rankwidth

Conclusion

Framework for 2-approximating branchwidth of connectivity functions

- Main application: $2^{2^{\mathcal{O}(k)}} n^2$ time 2-approximation algorithm for rankwidth
 - ▶ Solves the open problem of breaking the n^3 barrier for rankwidth

• Open problem: Is there a $f(k)(n+m)^{1.9}$ time g(k)-approximation algorithm for rankwidth?