Computing Tree Decompositions with Small Independence Number

Tuukka Korhonen

based on joint work with
Clément Dallard¹, Fedor V. Fomin, Petr A. Golovach, and Martin Milanič¹

¹FAMNIT and IAM, University of Primorska

Vertex Partitioning in Graphs: From Structure to Algorithms

28 November 2022

Tree-independence number • Independence number of a tree decomposition = maximum independence number of a bag

 Independence number of a tree decomposition = maximum independence number of a bag

$$\qquad \qquad \alpha(T) = \max_{v \in V(T)} \alpha(\text{bag}(v))$$

 Independence number of a tree decomposition = maximum independence number of a bag

$$\qquad \qquad \alpha(T) = \max_{v \in V(T)} \alpha(\text{bag}(v))$$

 Tree-independence number of a graph = minimum independence number of a tree decomposition of the graph

 Independence number of a tree decomposition = maximum independence number of a bag

$$\qquad \qquad \alpha(T) = \max_{v \in V(T)} \alpha(\text{bag}(v))$$

 Tree-independence number of a graph = minimum independence number of a tree decomposition of the graph

• tree-
$$\alpha(G) = \min_{T \text{ a TD of } G} \alpha(T)$$

 Independence number of a tree decomposition = maximum independence number of a bag

$$\qquad \qquad \alpha(T) = \max_{v \in V(T)} \alpha(\text{bag}(v))$$

 Tree-independence number of a graph = minimum independence number of a tree decomposition of the graph

• tree-
$$\alpha(G) = \min_{T \text{ a TD of } G} \alpha(T)$$

Introduced by [Yolov '18] and [Dallard, Milanič & Storgel '21]

 Independence number of a tree decomposition = maximum independence number of a bag

$$\qquad \qquad \alpha(T) = \max_{v \in V(T)} \alpha(\text{bag}(v))$$

 Tree-independence number of a graph = minimum independence number of a tree decomposition of the graph

• tree-
$$\alpha(G) = \min_{T \text{ a TD of } G} \alpha(T)$$

- Introduced by [Yolov '18] and [Dallard, Milanič & Storgel '21]
- Generalizes chordal graphs, treewidth, and various prior generalizations of chordal graphs

Given an *n*-vertex graph G and a tree decomposition T of G with $\alpha(T) = k$

Given an *n*-vertex graph *G* and a tree decomposition *T* of *G* with $\alpha(T) = k$

• $\mathcal{O}(n^{k+2})$ time algorithm for maximum weight independent set

Given an *n*-vertex graph *G* and a tree decomposition *T* of *G* with $\alpha(T) = k$

- $\mathcal{O}(n^{k+2})$ time algorithm for maximum weight independent set
- $\mathcal{O}(n^{|H|\cdot(k+2)})$ time maximum weight H-packing [Dallard, Milanič & Storgel '21]

Given an *n*-vertex graph *G* and a tree decomposition *T* of *G* with $\alpha(T) = k$

- $\mathcal{O}(n^{k+2})$ time algorithm for maximum weight independent set
- $\mathcal{O}(n^{|H|\cdot(k+2)})$ time maximum weight H-packing [Dallard, Milanič & Storgel '21]
- $f(k) \cdot n^{\mathcal{O}(k)}$ time algorithms for
 - feedback vertex set
 - longest induced path
 - maximum weight induced subgraph with bounded chromatic number satisfying a CMSO property [Milanič & Rzążewski '22]

Theorem

There is a $2^{\mathcal{O}(k^2)}n^{\mathcal{O}(k)}$ time 8-approximation algorithm for tree-independence number, which also outputs the corresponding tree decomposition.

Theorem

There is a $2^{\mathcal{O}(k^2)} n^{\mathcal{O}(k)}$ time 8-approximation algorithm for tree-independence number, which also outputs the corresponding tree decomposition.

• Improves over $n^{\mathcal{O}(k^3)}$ time $\mathcal{O}(k^2)$ -approximation by [Yolov '18]

Theorem

There is a $2^{\mathcal{O}(k^2)} n^{\mathcal{O}(k)}$ time 8-approximation algorithm for tree-independence number, which also outputs the corresponding tree decomposition.

• Improves over $n^{\mathcal{O}(k^3)}$ time $\mathcal{O}(k^2)$ -approximation by [Yolov '18]

Hardness results:

Theorem

There is a $2^{\mathcal{O}(k^2)} n^{\mathcal{O}(k)}$ time 8-approximation algorithm for tree-independence number, which also outputs the corresponding tree decomposition.

• Improves over $n^{\mathcal{O}(k^3)}$ time $\mathcal{O}(k^2)$ -approximation by [Yolov '18]

Hardness results:

• Assuming Gap-ETH, no $f(k) \cdot n^{o(k)}$ time g(k)-approximation algorithm

Theorem

There is a $2^{\mathcal{O}(k^2)} n^{\mathcal{O}(k)}$ time 8-approximation algorithm for tree-independence number, which also outputs the corresponding tree decomposition.

• Improves over $n^{\mathcal{O}(k^3)}$ time $\mathcal{O}(k^2)$ -approximation by [Yolov '18]

Hardness results:

- Assuming Gap-ETH, no $f(k) \cdot n^{o(k)}$ time g(k)-approximation algorithm
- For every constant $k \ge 4$, NP-hard to decide if tree- $\alpha(G) \le k$

Theorem

There is a $2^{\mathcal{O}(k^2)} n^{\mathcal{O}(k)}$ time 8-approximation algorithm for tree-independence number, which also outputs the corresponding tree decomposition.

• Improves over $n^{\mathcal{O}(k^3)}$ time $\mathcal{O}(k^2)$ -approximation by [Yolov '18]

Hardness results:

- Assuming Gap-ETH, no $f(k) \cdot n^{o(k)}$ time g(k)-approximation algorithm
- For every constant $k \ge 4$, NP-hard to decide if tree- $\alpha(G) \le k$

Open problems:

Theorem

There is a $2^{\mathcal{O}(k^2)} n^{\mathcal{O}(k)}$ time 8-approximation algorithm for tree-independence number, which also outputs the corresponding tree decomposition.

• Improves over $n^{\mathcal{O}(k^3)}$ time $\mathcal{O}(k^2)$ -approximation by [Yolov '18]

Hardness results:

- Assuming Gap-ETH, no $f(k) \cdot n^{o(k)}$ time g(k)-approximation algorithm
- For every constant $k \ge 4$, NP-hard to decide if tree- $\alpha(G) \le k$

Open problems:

• Complexity of deciding tree- $\alpha(G) \le k$ for k = 2, 3?

Theorem

There is a $2^{\mathcal{O}(k^2)} n^{\mathcal{O}(k)}$ time 8-approximation algorithm for tree-independence number, which also outputs the corresponding tree decomposition.

• Improves over $n^{\mathcal{O}(k^3)}$ time $\mathcal{O}(k^2)$ -approximation by [Yolov '18]

Hardness results:

- Assuming Gap-ETH, no $f(k) \cdot n^{o(k)}$ time g(k)-approximation algorithm
- For every constant $k \ge 4$, NP-hard to decide if tree- $\alpha(G) \le k$

Open problems:

- Complexity of deciding tree- $\alpha(G) \le k$ for k = 2, 3?
- Is deciding tree- $\alpha(G) \le k$ for unbounded k in NP or $\sum_{k=0}^{p}$ -hard?

1. Bounded tree- $\alpha \Rightarrow \alpha$ -balanced separators with bounded α

- 1. Bounded tree- $\alpha \Rightarrow \alpha$ -balanced separators with bounded α
- 2. Recursive construction in Robertson-Seymour fashion

- 1. Bounded tree- $\alpha \Rightarrow \alpha$ -balanced separators with bounded α
- 2. Recursive construction in Robertson-Seymour fashion
- 3. Reduction from finding balanced separators to finding separators

- 1. Bounded tree- $\alpha \Rightarrow \alpha$ -balanced separators with bounded α
- 2. Recursive construction in Robertson-Seymour fashion
- 3. Reduction from finding balanced separators to finding separators
- 4. 2-approximation algorithm for separators

Input: Graph G, integer k, and two sets of vertices V_1 , V_2

Task: Find an (V_1, V_2) -separator S with $\alpha(S) \leq 2k$, or conclude that no (V_1, V_2) -separators with $\alpha(S) \leq k$ exist

Input: Graph G, integer k, and two sets of vertices V_1 , V_2

Task: Find an (V_1, V_2) -separator S with $\alpha(S) \leq 2k$, or conclude that no (V_1, V_2) -separators with $\alpha(S) \leq k$ exist

1. Guess a container $R \supseteq S$ with $\alpha(R) \le \mathcal{O}(k^2)$

Input: Graph G, integer k, and two sets of vertices V_1 , V_2

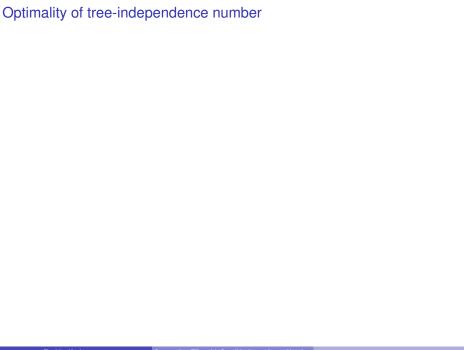
Task: Find an (V_1, V_2) -separator S with $\alpha(S) \leq 2k$, or conclude that no (V_1, V_2) -separators with $\alpha(S) \leq k$ exist

- 1. Guess a container $R \supseteq S$ with $\alpha(R) \le \mathcal{O}(k^2)$
- 2. By branching make sure that $R \subseteq N(V_1 \cup V_2)$

Input: Graph G, integer k, and two sets of vertices V_1 , V_2

Task: Find an (V_1, V_2) -separator S with $\alpha(S) \leq 2k$, or conclude that no (V_1, V_2) -separators with $\alpha(S) \leq k$ exist

- 1. Guess a container $R \supseteq S$ with $\alpha(R) \le \mathcal{O}(k^2)$
- 2. By branching make sure that $R \subseteq N(V_1 \cup V_2)$
- 3. Round a linear program



Optimality of tree-independence number • Let λ be a monotone graph parameter and tree- λ defined analogously to tree- α Tuukka Korhonen Computing TDs with Small Independence Number

Optimality of tree-independence number

- Let λ be a monotone graph parameter and tree- λ defined analogously to tree- α
 - tree- $\lambda(G) = \min_{T \text{ a tree decomposition of } G} \max_{v \in V(T)} \lambda(G[\text{bag}(v)])$

Optimality of tree-independence number

- Let λ be a monotone graph parameter and tree- λ defined analogously to tree- α
 - tree- $\lambda(G) = \min_{T \text{ a tree decomposition of } G} \max_{v \in V(T)} \lambda(G[\text{bag}(v)])$

Theorem

Either exists f s.t. $\alpha(G) \leq f(\lambda(G))$ for all G, or independent set is para-NP-hard parameterized by tree- $\lambda(G)$

Optimality of tree-independence number

- Let λ be a monotone graph parameter and tree- λ defined analogously to tree- α
 - tree- $\lambda(G) = \min_{T \text{ a tree decomposition of } G} \max_{v \in V(T)} \lambda(G[\text{bag}(v)])$

Theorem

Either exists f s.t. $\alpha(G) \le f(\lambda(G))$ for all G, or independent set is para-NP-hard parameterized by tree- $\lambda(G)$

 Proof: Independent set is NP-hard on twice-subdivided graphs, but they have a tree decomposition where every bag induces either independent set or P₄

- Minor-matching hypertree width of *G* defined by [Yolov '18]:
 - tree- $\mu(G)$ = tree- $\alpha(L(G)^2)$

- Minor-matching hypertree width of G defined by [Yolov '18]:
 - tree- $\mu(G)$ = tree- $\alpha(L(G)^2)$
- Alternatively, for $S \subseteq V$, let $\mu(S)$ be maximum size of induced matching in G whose every edge has at least one endpoint in S

- Minor-matching hypertree width of G defined by [Yolov '18]:
 - tree- $\mu(G)$ = tree- $\alpha(L(G)^2)$
- Alternatively, for S ⊆ V, let µ(S) be maximum size of induced matching in G
 whose every edge has at least one endpoint in S
 - $\mu(T) = \max_{v \in V(T)} \mu(\text{bag}(v))$

- Minor-matching hypertree width of G defined by [Yolov '18]:
 - tree- $\mu(G)$ = tree- $\alpha(L(G)^2)$
- Alternatively, for S ⊆ V, let µ(S) be maximum size of induced matching in G
 whose every edge has at least one endpoint in S
 - $\mu(T) = \max_{v \in V(T)} \mu(\text{bag}(v))$
 - tree- $\mu(G) = \min_{T \text{ a TD of } G} \mu(T)$

- Minor-matching hypertree width of *G* defined by [Yolov '18]:
 - tree- $\mu(G)$ = tree- $\alpha(L(G)^2)$
- Alternatively, for $S \subseteq V$, let $\mu(S)$ be maximum size of induced matching in G whose every edge has at least one endpoint in S
 - $\mu(T) = \max_{v \in V(T)} \mu(\text{bag}(v))$
 - tree- $\mu(G) = \min_{T \text{ a TD of } G} \mu(T)$
- tree- $\mu(G) \leq$ tree- $\alpha(G)$, but e.g. $K_{n,n}$ has bounded tree- μ but unbounded tree- α

- Minor-matching hypertree width of G defined by [Yolov '18]:
 - tree- $\mu(G)$ = tree- $\alpha(L(G)^2)$
- Alternatively, for $S \subseteq V$, let $\mu(S)$ be maximum size of induced matching in G whose every edge has at least one endpoint in S
 - $\mu(T) = \max_{v \in V(T)} \mu(\text{bag}(v))$
 - tree- $\mu(G) = \min_{T \text{ a TD of } G} \mu(T)$
- tree- $\mu(G) \leq$ tree- $\alpha(G)$, but e.g. $K_{n,n}$ has bounded tree- μ but unbounded tree- α
- Given a decomposition T with $\mu(T) = k$, we can solve [Yolov '18]:

- Minor-matching hypertree width of G defined by [Yolov '18]:
 - tree- $\mu(G)$ = tree- $\alpha(L(G)^2)$
- Alternatively, for $S \subseteq V$, let $\mu(S)$ be maximum size of induced matching in G whose every edge has at least one endpoint in S
 - $\mu(T) = \max_{v \in V(T)} \mu(\text{bag}(v))$
 - tree- $\mu(G) = \min_{T \text{ a TD of } G} \mu(T)$
- tree- $\mu(G) \leq$ tree- $\alpha(G)$, but e.g. $K_{n,n}$ has bounded tree- μ but unbounded tree- α
- Given a decomposition T with $\mu(T) = k$, we can solve [Yolov '18]:
 - ▶ Maximum weight independent set in $n^{\mathcal{O}(k)}$ time
 - r-coloring in $n^{O(kr)}$ time

- Minor-matching hypertree width of *G* defined by [Yolov '18]:
 - tree- $\mu(G)$ = tree- $\alpha(L(G)^2)$
- Alternatively, for S ⊆ V, let µ(S) be maximum size of induced matching in G
 whose every edge has at least one endpoint in S
 - $\mu(T) = \max_{v \in V(T)} \mu(\text{bag}(v))$
 - tree- $\mu(G) = \min_{T \text{ a TD of } G} \mu(T)$
- tree- $\mu(G) \leq$ tree- $\alpha(G)$, but e.g. $K_{n,n}$ has bounded tree- μ but unbounded tree- α
- Given a decomposition T with $\mu(T) = k$, we can solve [Yolov '18]:
 - ▶ Maximum weight independent set in $n^{O(k)}$ time
 - r-coloring in $n^{O(kr)}$ time
- Based on a theorem that a maximal independent set of G can intersect S in at most $n^{\mathcal{O}(\mu(S))}$ different ways

• Similar optimality argument for tree- μ : Optimal among tree decomposition based parameters where width of bag(v) depends on G[N[bag(v)]] with bag(v) labeled

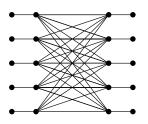
- Similar optimality argument for tree- μ : Optimal among tree decomposition based parameters where width of bag(v) depends on G[N[bag(v)]] with bag(v) labeled
- Open problems:

- Similar optimality argument for tree- μ : Optimal among tree decomposition based parameters where width of bag(v) depends on G[N[bag(v)]] with bag(v) labeled
- Open problems:
 - Feedback vertex set parameterized by tree-μ?

- Similar optimality argument for tree- μ : Optimal among tree decomposition based parameters where width of bag(v) depends on G[N[bag(v)]] with bag(v) labeled
- Open problems:
 - Feedback vertex set parameterized by tree-μ?
 - ▶ General framework for $n^{\mathcal{O}(\text{tree-}\mu(G))}$ time algorithms for finding sparse induced subgraphs?

- Similar optimality argument for tree- μ : Optimal among tree decomposition based parameters where width of bag(v) depends on G[N[bag(v)]] with bag(v) labeled
- Open problems:
 - Feedback vertex set parameterized by tree-μ?
 - ▶ General framework for $n^{\mathcal{O}(\text{tree-}\mu(G))}$ time algorithms for finding sparse induced subgraphs?
 - Even more general tree decomposition based parameters for which independent set is XP?

- Similar optimality argument for tree- μ : Optimal among tree decomposition based parameters where width of bag(v) depends on G[N[bag(v)]] with bag(v) labeled
- Open problems:
 - Feedback vertex set parameterized by tree-μ?
 - ▶ General framework for $n^{\mathcal{O}(\text{tree-}\mu(G))}$ time algorithms for finding sparse induced subgraphs?
 - Even more general tree decomposition based parameters for which independent set is XP?



Thank you!

Thank you!