Grid Induced Minor Theorem for Graphs of Small Degree

Tuukka Korhonen

CSGT 2022

Prague, July 27, 2022

- 1. Induced subgraph
 - vertex deletions

- 1. Induced subgraph
 - vertex deletions

- 2. Induced minor
 - vertex deletions
 - edge contractions

- 1. Induced subgraph
 - vertex deletions

- 2. Induced minor
 - vertex deletions
 - edge contractions

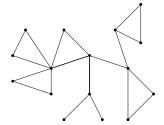
- 3. Minor
 - vertex deletions
 - edge contractions
 - edge deletions

Graph classses defined by containment

- For a graph H, we can define graph classes by excluding H
 - H-minor-free graphs
 - H-induced-minor-free graphs

Graph classses defined by containment

- For a graph H, we can define graph classes by excluding H
 - H-minor-free graphs
 - ▶ H-induced-minor-free graphs
- Example: C₄-minor-free graphs

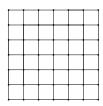


- Every biconnected component is a triangle
- Chordal and treewidth ≤ 2

Grid minor theorem

Robertson & Seymour, Graph Minors V. ('86):

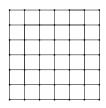
• If *H* is planar, then *H*-minor-free graphs have bounded treewidth



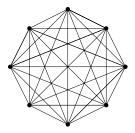
Grid minor theorem

Robertson & Seymour, Graph Minors V. ('86):

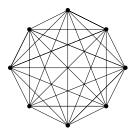
- If *H* is planar, then *H*-minor-free graphs have bounded treewidth
- \Leftrightarrow There is a function f so that if a graph has treewidth $\geq f(k)$, then it contains a $k \times k$ -grid as a minor



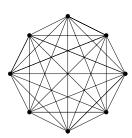
• Complete graph contains only complete graphs as induced minors

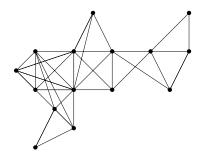


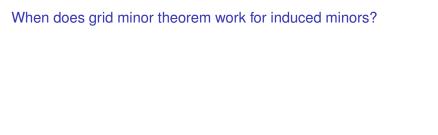
- Complete graph contains only complete graphs as induced minors
- ⇒ C₄-induced-minor-free graphs have unbounded treewidth



- Complete graph contains only complete graphs as induced minors
- ⇒ C₄-induced-minor-free graphs have unbounded treewidth
 - C₄-induced-minor-free graphs ⇔ chordal graphs







When does grid minor theorem work for induced minors?

Theorem (Fomin, Golovach, and Thilikos, 2011)

For any graph H there is a constant C_H so that any H-minor-free graph with treewidth $\geq C_H \cdot k$ contains a $k \times k$ -grid as an induced minor.

When does grid minor theorem work for induced minors?

Theorem (Fomin, Golovach, and Thilikos, 2011)

For any graph H there is a constant C_H so that any H-minor-free graph with treewidth $\geq C_H \cdot k$ contains a $k \times k$ -grid as an induced minor.

Theorem (K. 2022)

There is a function $f(k, d) = \mathcal{O}(k^{10} + 2^{d^5})$ so that any graph with maximum degree d and treewidth $\geq f(k, d)$ contains a $k \times k$ -grid as an induced minor.

When does grid minor theorem work for induced minors?

Theorem (Fomin, Golovach, and Thilikos, 2011)

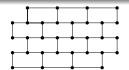
For any graph H there is a constant C_H so that any H-minor-free graph with treewidth $\geq C_H \cdot k$ contains a $k \times k$ -grid as an induced minor.

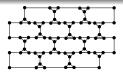
Theorem (K. 2022)

There is a function $f(k, d) = \mathcal{O}(k^{10} + 2^{d^5})$ so that any graph with maximum degree d and treewidth $\geq f(k, d)$ contains a $k \times k$ -grid as an induced minor.

Corollary (Induced subgraph version)

There is a function f(k, d) so that any graph with maximum degree d and treewidth $\geq f(k, d)$ contains a $k \times k$ -wall or the line graph of a $k \times k$ -wall as an induced subgraph.





Conjectured by Aboulker, Adler, Kim, Sintiari, and Trotignon, 2021

Open problem

Is there a quasipolynomial time algorithm for maximum independent set on H-induced-minor-free graphs when H is planar?

Recall: Quasipolynomial time is $2^{\text{polylog}n}$ time

Open problem

Is there a quasipolynomial time algorithm for maximum independent set on H-induced-minor-free graphs when H is planar?

Recall: Quasipolynomial time is 2^{polylogn} time

Solved special cases:

- $H = P_t$ [Gartland and Lokshtanov, 2020]
- $H = C_t$ [Gartland, Lokshtanov, Pilipczuk, Pilipczuk, Rzazewski, 2021]
- $H = W_4$, K_5^- , or $K_{2,q}$ [Dallard, Milanic, Storgel, 2022]

Open problem

Is there a quasipolynomial time algorithm for maximum independent set on H-induced-minor-free graphs when H is planar?

Recall: Quasipolynomial time is 2^{polylogn} time

Solved special cases:

- $H = P_t$ [Gartland and Lokshtanov, 2020]
- $H = C_t$ [Gartland, Lokshtanov, Pilipczuk, Pilipczuk, Rzazewski, 2021]
- $H = W_4$, K_5^- , or $K_{2,q}$ [Dallard, Milanic, Storgel, 2022]

Important open special case:

even-hole-free graphs

Open problem

Is there a quasipolynomial time algorithm for maximum independent set on H-induced-minor-free graphs when H is planar?

Recall: Quasipolynomial time is 2^{polylogn} time

Solved special cases:

- $H = P_t$ [Gartland and Lokshtanov, 2020]
- $H = C_t$ [Gartland, Lokshtanov, Pilipczuk, Pilipczuk, Rzazewski, 2021]
- $H = W_4$, K_5^- , or $K_{2,q}$ [Dallard, Milanic, Storgel, 2022]

Important open special case:

even-hole-free graphs

Our theorem directly gives

⇒ Linear-time algorithm when input graphs have bounded degree

Open problem

Is there a quasipolynomial time algorithm for maximum independent set on H-induced-minor-free graphs when H is planar?

Recall: Quasipolynomial time is 2^{polylogn} time

Solved special cases:

- $H = P_t$ [Gartland and Lokshtanov, 2020]
- $H = C_t$ [Gartland, Lokshtanov, Pilipczuk, Pilipczuk, Rzazewski, 2021]
- $H = W_4$, K_5^- , or $K_{2,q}$ [Dallard, Milanic, Storgel, 2022]

Important open special case:

even-hole-free graphs

Our theorem directly gives

- ⇒ Linear-time algorithm when input graphs have bounded degree
- $\Rightarrow \mathcal{O}(2^{n/\log^{1/6} n})$ time algorithm in general

Proof

Proof

A vertex *v* of *G* is *sparsifiable* if it satisfies one of the following:

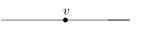
A vertex *v* of *G* is *sparsifiable* if it satisfies one of the following:

1. v has degree ≤ 2

v

A vertex *v* of *G* is *sparsifiable* if it satisfies one of the following:

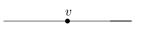
1. v has degree ≤ 2



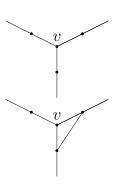
2. v has degree 3 and all neighbors of v have degree \leq 2

A vertex *v* of *G* is *sparsifiable* if it satisfies one of the following:

1. v has degree ≤ 2



2. v has degree 3 and all neighbors of v have degree ≤ 2

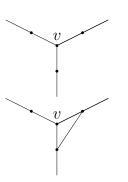


3. v has degree 3, one of its neighbors has degree \leq 2, and two others form a triangle with v

A vertex v of G is *sparsifiable* if it satisfies one of the following:

1. v has degree ≤ 2

2. v has degree 3 and all neighbors of v have degree ≤ 2



3. ν has degree 3, one of its neighbors has degree \leq 2, and two others form a triangle with ν

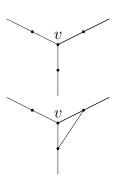
Lemma

Let G, H be graphs so that every vertex of G is sparsifiable and H has minimum degree > 3. Then G contains H as an induced minor if G contains H as a minor.

A vertex *v* of *G* is *sparsifiable* if it satisfies one of the following:

1. v has degree ≤ 2

2. v has degree 3 and all neighbors of v have degree ≤ 2



3. v has degree 3, one of its neighbors has degree \leq 2, and two others form a triangle with v

Lemma

Let G, H be graphs so that every vertex of G is sparsifiable and H has minimum degree

 \geq 3. Then *G* contains *H* as an induced minor if *G* contains *H* as a minor.

Goal: Make every vertex of G sparsifiable while maintaining high treewidth

Let G be a graph and d the maximum degree of G

Let G be a graph and d the maximum degree of G

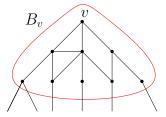
1. Partition V(G) into d^5 distance-5 independent sets $I_1, I_2, \ldots, I_{d^5}$

Let G be a graph and d the maximum degree of G

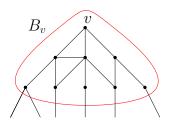
- 1. Partition V(G) into d^5 distance-5 independent sets $I_1, I_2, \ldots, I_{d^5}$
- 2. Do d^5 iterations. In iteration i, delete vertices so that all vertices of l_i are either made sparsifiable or deleted, and the treewidth of G stays high

Let G be a graph and d the maximum degree of G

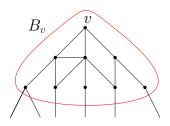
- 1. Partition V(G) into d^5 distance-5 independent sets $I_1, I_2, \ldots, I_{d^5}$
- 2. Do d^5 iterations. In iteration i, delete vertices so that all vertices of l_i are either made sparsifiable or deleted, and the treewidth of G stays high
- ⇒ Finish by using the lemma of the previous slide with the grid minor theorem



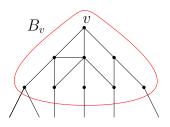
For each vertex $v \in I_i$, let B_v be the distance-2 ball around v



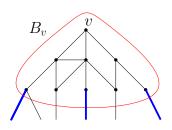
 the balls B_v do not overlap because I_i is distance-5 independent



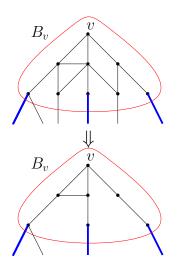
- the balls B_v do not overlap because I_i is distance-5 independent
- let G' be the graph obtained by contracting each ball B_v into one vertex



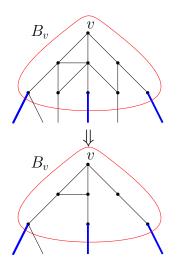
- the balls B_v do not overlap because I_i is distance-5 independent
- let G' be the graph obtained by contracting each ball B_{ν} into one vertex
- G' has large treewidth, G' has subgraph G'' with maximum degree 3 and large treewidth



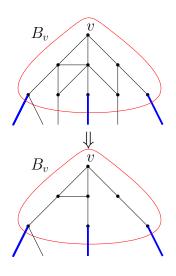
- the balls B_{ν} do not overlap because I_i is distance-5 independent
- let G' be the graph obtained by contracting each ball B_{ν} into one vertex
- G' has large treewidth, G' has subgraph G'' with maximum degree 3 and large treewidth
- G'' is a minor of G, with a minor model given by the balls B_{ν}



- the balls B_v do not overlap because I_i is distance-5 independent
- let G' be the graph obtained by contracting each ball B_{ν} into one vertex
- G' has large treewidth, G' has subgraph G''
 with maximum degree 3 and large treewidth
- G" is a minor of G, with a minor model given by the balls B_v
- delete vertices from B_v so that v is either deleted or made sparsifiable while preserving the minor model



- the balls B_v do not overlap because I_i is distance-5 independent
- let G' be the graph obtained by contracting each ball B_{ν} into one vertex
- G' has large treewidth, G' has subgraph G''
 with maximum degree 3 and large treewidth
- G" is a minor of G, with a minor model given by the balls B_v
- delete vertices from B_v so that v is either deleted or made sparsifiable while preserving the minor model(case analysis with 4 cases)



- the balls B_v do not overlap because I_i is distance-5 independent
- let G' be the graph obtained by contracting each ball B_{ν} into one vertex
- G' has large treewidth, G' has subgraph G''
 with maximum degree 3 and large treewidth
- G'' is a minor of G, with a minor model given by the balls B_{ν}
- delete vertices from B_v so that v is either deleted or made sparsifiable while preserving the minor model(case analysis with 4 cases)
- all vertices in I_i become sparsifiable while preserving G" as a minor

Thank you!

Thank you!