Fast FPT-Approximation of Branchwidth

Fedor V. Fomin, Tuukka Korhonen

Department of Informatics, University of Bergen, Norway

APGA 2022 May 3, 2022

 Framework for designing FPT 2-approximation algorithms for branchwidth of symmetric submodular functions

- Framework for designing FPT 2-approximation algorithms for branchwidth of symmetric submodular functions
- Applications:

Theorem

There is a $2^{2^{\mathcal{O}(k)}}n^2$ time 2-approximation algorithm for rankwidth.

- Framework for designing FPT 2-approximation algorithms for branchwidth of symmetric submodular functions
- Applications:

Theorem

There is a $2^{2^{\mathcal{O}(k)}} n^2$ time 2-approximation algorithm for rankwidth.

Improves algorithms using rankwidth/cliquewidth from $f(k)n^3$ to $f(k)n^2$

- Framework for designing FPT 2-approximation algorithms for branchwidth of symmetric submodular functions
- Applications:

Theorem

There is a $2^{2^{\mathcal{O}(k)}}n^2$ time 2-approximation algorithm for rankwidth.

Improves algorithms using rankwidth/cliquewidth from $f(k)n^3$ to $f(k)n^2$ Previous algorithms:

- 3-approximation in $f(k)n^9 \log n$ time [Oum & Seymour, 2006]
- 3-approximation in $f(k)n^3$ time [Oum, 2008]
- exact in f(k)n³ time [Hlinený & Oum, 2008]

- Framework for designing FPT 2-approximation algorithms for branchwidth of symmetric submodular functions
- Applications:

Theorem

There is a $2^{2^{\mathcal{O}(k)}}n^2$ time 2-approximation algorithm for rankwidth.

Improves algorithms using rankwidth/cliquewidth from $f(k)n^3$ to $f(k)n^2$ Previous algorithms:

- 3-approximation in $f(k)n^9 \log n$ time [Oum & Seymour, 2006]
- 3-approximation in $f(k)n^3$ time [Oum, 2008]
- exact in f(k)n³ time [Hlinený & Oum, 2008]

Theorem

There is a $2^{\mathcal{O}(k)}n$ time 2-approximation algorithm for graph branchwidth.

- Framework for designing FPT 2-approximation algorithms for branchwidth of symmetric submodular functions
- Applications:

Theorem

There is a $2^{2^{\mathcal{O}(k)}}n^2$ time 2-approximation algorithm for rankwidth.

Improves algorithms using rankwidth/cliquewidth from $f(k)n^3$ to $f(k)n^2$ Previous algorithms:

- 3-approximation in $f(k)n^9 \log n$ time [Oum & Seymour, 2006]
- 3-approximation in $f(k)n^3$ time [Oum, 2008]
- exact in $f(k)n^3$ time [Hlinený & Oum, 2008]

Theorem

There is a $2^{\mathcal{O}(k)}n$ time 2-approximation algorithm for graph branchwidth.

Improves approximation ratio from 3 to 2

Plan

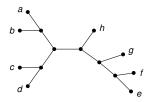
- 1. Definitions
- 2. Overview of rankwidth algorithm
- 3. Combinatorial framework
- 4. Algorithmic framework

Plan

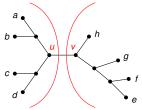
- 1. Definitions
- 2. Overview of rankwidth algorithm
- 3. Combinatorial framework
- 4. Algorithmic framework

- Let V be a set and $f: 2^V \to \mathbb{Z}_{\geq 0}$ a symmetric set function.
 - ▶ Symmetric: For any $A \subseteq \overline{V}$, it holds that $f(A) = f(\overline{A})$, where $\overline{A} = V \setminus A$

- Let V be a set and $f: 2^V \to \mathbb{Z}_{>0}$ a symmetric set function.
 - ▶ Symmetric: For any $A \subseteq \overline{V}$, it holds that $f(A) = f(\overline{A})$, where $\overline{A} = V \setminus A$
- Branch decomposition of f is a cubic tree whose leaves are the elements of V
- Example with $V = \{a, b, c, d, e, f, g, h\}$:

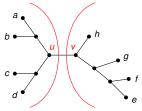


- Let *V* be a set and $f: 2^V \to \mathbb{Z}_{>0}$ a symmetric set function.
 - ▶ Symmetric: For any $A \subseteq \overline{V}$, it holds that $f(A) = f(\overline{A})$, where $\overline{A} = V \setminus A$
- ullet Branch decomposition of f is a cubic tree whose leaves are the elements of V
- Example with $V = \{a, b, c, d, e, f, g, h\}$:



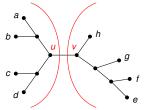
- Each edge of decomposition corresponds to a bipartition of V
- Example: uv corresponds to $(\{a, b, c, d\}, \{e, f, g, h\})$

- Let *V* be a set and $f: 2^V \to \mathbb{Z}_{>0}$ a symmetric set function.
 - ▶ Symmetric: For any $A \subseteq \overline{V}$, it holds that $f(A) = f(\overline{A})$, where $\overline{A} = V \setminus A$
- Branch decomposition of f is a cubic tree whose leaves are the elements of V
- Example with $V = \{a, b, c, d, e, f, g, h\}$:



- Each edge of decomposition corresponds to a bipartition of V
- Example: uv corresponds to $(\{a, b, c, d\}, \{e, f, g, h\})$
- We denote $f(uv) = f(\{a, b, c, d\}) = f(\{e, f, g, h\})$
- The width of the decomposition is $\max_{uv \in E(T)} f(uv)$

- Let V be a set and $f: 2^V \to \mathbb{Z}_{>0}$ a symmetric set function.
 - ▶ Symmetric: For any $A \subseteq \overline{V}$, it holds that $f(A) = f(\overline{A})$, where $\overline{A} = V \setminus A$
- Branch decomposition of f is a cubic tree whose leaves are the elements of V
- Example with $V = \{a, b, c, d, e, f, g, h\}$:



- Each edge of decomposition corresponds to a bipartition of V
- Example: uv corresponds to $(\{a, b, c, d\}, \{e, f, g, h\})$
- We denote $f(uv) = f(\{a, b, c, d\}) = f(\{e, f, g, h\})$
- The width of the decomposition is $\max_{uv \in E(T)} f(uv)$
- The branchwidth of f is minimum width of a branch decomposition of f

- Function $f: 2^V \to \mathbb{Z}_{\geq 0}$ is a connectivity function if for any $A, B \subseteq V$:
 - ▶ $f(A) = f(\overline{A})$ (symmetric)
 - ► $f(A \cup B) + f(A \cap B) \le f(A) + f(B)$ (submodular)

- Function $f: 2^V \to \mathbb{Z}_{\geq 0}$ is a connectivity function if for any $A, B \subseteq V$:
 - ▶ $f(A) = f(\overline{A})$ (symmetric)
 - ► $f(A \cup B) + f(A \cap B) \le f(A) + f(B)$ (submodular)

Examples:

- Border of edge set: V = E(G), f(A) is the number of vertices incident to edges in both A and \overline{A}
 - Branchwidth of G

- Function $f: 2^V \to \mathbb{Z}_{\geq 0}$ is a connectivity function if for any $A, B \subseteq V$:
 - ▶ $f(A) = f(\overline{A})$ (symmetric)
 - ► $f(A \cup B) + f(A \cap B) \le f(A) + f(B)$ (submodular)

Examples:

- Border of edge set: V = E(G), f(A) is the number of vertices incident to edges in both A and \overline{A}
 - Branchwidth of G
- Cut-rank: V = V(G), f(A) is the GF(2) rank of the $|A| \times |\overline{A}|$ matrix representing $G[A, \overline{A}]$
 - Rankwidth of G

- Function $f: 2^V \to \mathbb{Z}_{\geq 0}$ is a connectivity function if for any $A, B \subseteq V$:
 - ▶ $f(A) = f(\overline{A})$ (symmetric)
 - ► $f(A \cup B) + f(A \cap B) \le f(A) + f(B)$ (submodular)

Examples:

- Border of edge set: V = E(G), f(A) is the number of vertices incident to edges in both A and \overline{A}
 - Branchwidth of G
- Cut-rank: V = V(G), f(A) is the GF(2) rank of the $|A| \times |\overline{A}|$ matrix representing $G[A, \overline{A}]$
 - Rankwidth of G
- Also carving-width, matroid branchwidth, rankwidth in different fields...

Plan

- 1. Definitions
- 2. Overview of rankwidth algorithm
- 3. Combinatorial framework
- 4. Algorithmic framework

Well-known technique: Iterative compression

• Insert vertices one-by-one, maintaining an "augmented" rank decomposition of width $\leq 2_{\text{TW}}(G)$

- Insert vertices one-by-one, maintaining an "augmented" rank decomposition of width $< 2_{\text{TW}}(G)$
- Insert one vertex in $2^{\mathcal{O}(r_{\mathbb{W}}(G))}n$ time

- Insert vertices one-by-one, maintaining an "augmented" rank decomposition of width $< 2_{\text{TW}}(G)$
- Insert one vertex in $2^{\mathcal{O}(r_{\mathbb{W}}(G))}n$ time
- Improve width from 2rw(G) + 1 to 2rw(G) in $2^{2^{\mathcal{O}(rw(G))}}n$ time

- Insert vertices one-by-one, maintaining an "augmented" rank decomposition of width $\leq 2_{\text{TW}}(G)$
- Insert one vertex in $2^{\mathcal{O}(r_{\mathbb{W}}(G))}n$ time
- Improve width from 2rw(G) + 1 to 2rw(G) in $2^{2^{\mathcal{O}(rw(G))}}n$ time
- ullet Repeat n times $ightarrow 2^{2^{\mathcal{O}({\tt rw}(G))}} n^2$ time algorithm

- Insert vertices one-by-one, maintaining an "augmented" rank decomposition of width $\leq 2_{\text{TW}}(G)$
- Insert one vertex in $2^{\mathcal{O}(r_{\mathbb{W}}(G))}n$ time
- ullet Improve width from $2_{ t TW}(G)+1$ to $2_{ t TW}(G)$ in $2^{2^{\mathcal{O}(t TW}(G))}n$ time
- ullet Repeat n times $ightarrow 2^{2^{\mathcal{O}({ t rw}(G))}} n^2$ time algorithm

Input: Augmented rank decomposition of *G* of width *k*

Output: Augmented rank decomposition of G of width $\leq k-1$ or conclusion $k \leq 2 \operatorname{rw}(G)$

Time complexity: $2^{2^{\mathcal{O}(k)}}n$

Input: Augmented rank decomposition of G of width k

Output: Augmented rank decomposition of G of width $\leq k-1$ or conclusion $k \leq 2 \operatorname{rw}(G)$

Time complexity: $2^{2^{\mathcal{O}(k)}}n$

(Assumes that the graph G is already stored as adjacency matrix)

Input: Augmented rank decomposition of *G* of width *k*

Output: Augmented rank decomposition of G of width $\leq k-1$ or conclusion $k \leq 2rw(G)$

Time complexity: $2^{2^{O(k)}}n$

(Assumes that the graph G is already stored as adjacency matrix)

Our algorithm

Iteratively improves the given decomposition by applying refinement operations

Input: Augmented rank decomposition of G of width k

Output: Augmented rank decomposition of G of width < k-1 or conclusion k < 2 rw(G)

Time complexity: $2^{2^{O(k)}}n$

(Assumes that the graph G is already stored as adjacency matrix)

Our algorithm

- Iteratively improves the given decomposition by applying refinement operations
- Combinatorial framework: For any connectivity function f, a branch decomposition of width > 2bw(f) can be improved by refinement operation

Input: Augmented rank decomposition of *G* of width *k*

Output: Augmented rank decomposition of G of width $\leq k-1$ or conclusion $k \leq 2rw(G)$

Time complexity: $2^{2^{O(k)}}n$

(Assumes that the graph G is already stored as adjacency matrix)

Our algorithm

- Iteratively improves the given decomposition by applying **refinement operations**
- Combinatorial framework: For any connectivity function f, a branch decomposition of width $> 2b_W(f)$ can be improved by refinement operation
- Algorithmic framework:
 - ▶ Direct computation of refinements by dynamic programming \rightarrow $2^{2^{\mathcal{O}(k)}} n^2$ time
 - ▶ Amortization techniques using combinatorial properties $\rightarrow 2^{2^{\mathcal{O}(k)}}n$ time

Plan

- 1. Definitions
- 2. Overview of rankwidth algorithm
- 3. Combinatorial framework
- 4. Algorithmic framework

General idea

- Setting:
 - ▶ Let $f: 2^V \to \mathbb{Z}_{\geq 0}$ be a connectivity function
 - ▶ We have a branch decomposition T of f of width k
 - ▶ We want to either improve T or conclude $k \le 2bw(f)$

General idea

- Setting:
 - ▶ Let $f: 2^V \to \mathbb{Z}_{\geq 0}$ be a connectivity function
 - We have a branch decomposition T of f of width k
 - ▶ We want to either improve T or conclude $k \le 2bw(f)$

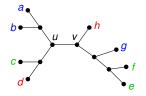
- Strategy:
 - Let h(T) be the number of edges of T of width k (heavy edges)
 - ▶ Either decrease h(T) by using a **refinement operation**, or conclude that $k \le 2bw(f)$

Refinement operation

Specified by 4-tuple (r, C_1, C_2, C_3) , where $r \in E(T)$ and (C_1, C_2, C_3) tripartition of V

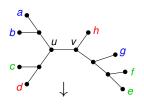
Refinement operation

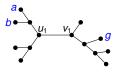
Specified by 4-tuple (r, C_1, C_2, C_3) , where $r \in E(T)$ and (C_1, C_2, C_3) tripartition of V Example with $(r, C_1, C_2, C_3) = (uv, \{a, b, g\}, \{c, e, f\}, \{d, h\})$

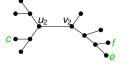


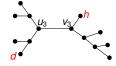
Refinement operation

Specified by 4-tuple (r, C_1, C_2, C_3) , where $r \in E(T)$ and (C_1, C_2, C_3) tripartition of V Example with $(r, C_1, C_2, C_3) = (uv, \{a, b, g\}, \{c, e, f\}, \{d, h\})$



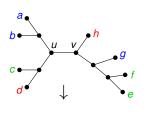


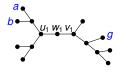


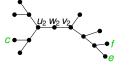


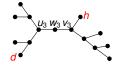
Refinement operation

Specified by 4-tuple (r, C_1, C_2, C_3) , where $r \in E(T)$ and (C_1, C_2, C_3) tripartition of V Example with $(r, C_1, C_2, C_3) = (uv, \{a, b, g\}, \{c, e, f\}, \{d, h\})$



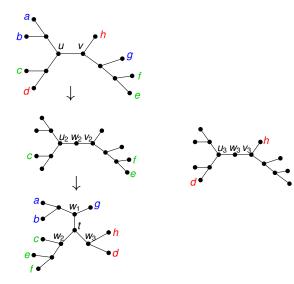


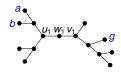


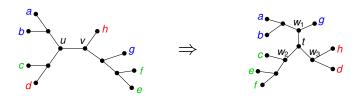


Refinement operation

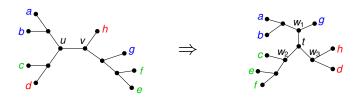
Specified by 4-tuple (r, C_1, C_2, C_3) , where $r \in E(T)$ and (C_1, C_2, C_3) tripartition of V Example with $(r, C_1, C_2, C_3) = (uv, \{a, b, g\}, \{c, e, f\}, \{d, h\})$



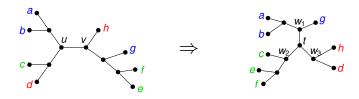




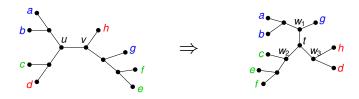
Example with $(r, C_1, C_2, C_3) = (uv, \{a, b, g\}, \{c, e, f\}, \{d, h\})$



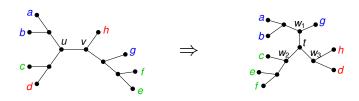
• Observation 1: For each i, there will be an edge $w_i t$ corresponding to $(C_i, \overline{C_i})$



- Observation 1: For each i, there will be an edge $w_i t$ corresponding to $(C_i, \overline{C_i})$
 - ► (Except when *C_i* is empty)

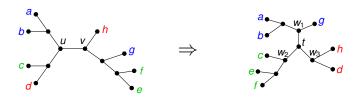


- Observation 1: For each i, there will be an edge $w_i t$ corresponding to $(C_i, \overline{C_i})$ (Except when C_i is empty)
- Let $(W, \overline{W}) = (\{a, b, c, d\}, \{e, f, g, h\})$ be the cut of uv



- Observation 1: For each i, there will be an edge $w_i t$ corresponding to $(C_i, \overline{C_i})$ (Except when C_i is empty)
- Let $(W, \overline{W}) = (\{a, b, c, d\}, \{e, f, g, h\})$ be the cut of uv
- Observation 2: For each i, there will be edges corresponding to $(C_i \cap W, \overline{C_i \cap W})$ and $(C_i \cap \overline{W}, \overline{C_i \cap \overline{W}})$

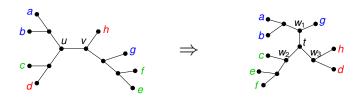
Local Improvement



- Let $(W, \overline{W}) = (\{a, b, c, d\}, \{e, f, g, h\})$ be the cut of uv
- Combination of Observation 1 and 2:
 - ▶ The widths of edges "near the center" will be $f(C_i)$, $f(C_i \cap W)$, and $f(C_i \cap \overline{W})$ for each i

Local Improvement

Example with $(r, C_1, C_2, C_3) = (uv, \{a, b, g\}, \{c, e, f\}, \{d, h\})$



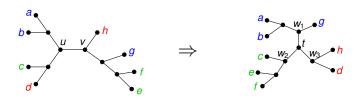
- Let $(W, \overline{W}) = (\{a, b, c, d\}, \{e, f, g, h\})$ be the cut of uv
- Combination of Observation 1 and 2:
 - ▶ The widths of edges "near the center" will be $f(C_i)$, $f(C_i \cap W)$, and $f(C_i \cap \overline{W})$ for each i

Theorem

For any set $W \subseteq V$ with f(W) > 2bw(f) there exists tripartition (C_1, C_2, C_3) of V so that for each i it holds that $f(C_i) < f(W)/2$, $f(C_i \cap W) < f(W)$, and $f(C_i \cap \overline{W}) < f(W)$.

Local Improvement

Example with $(r, C_1, C_2, C_3) = (uv, \{a, b, g\}, \{c, e, f\}, \{d, h\})$



- Let $(W, \overline{W}) = (\{a, b, c, d\}, \{e, f, g, h\})$ be the cut of uv
- Combination of Observation 1 and 2:
 - ▶ The widths of edges "near the center" will be $f(C_i)$, $f(C_i \cap W)$, and $f(C_i \cap \overline{W})$ for each i

Theorem

For any set $W \subseteq V$ with f(W) > 2bw(f) there exists tripartition (C_1, C_2, C_3) of V so that for each i it holds that $f(C_i) < f(W)/2$, $f(C_i \cap W) < f(W)$, and $f(C_i \cap \overline{W}) < f(W)$.

 \Rightarrow If f(uv) > 2bw(f), there exists refinement with uv that "locally" improves T

• Let $uv \in E(T)$, (W, \overline{W}) the cut of uv, and f(uv) = k

- Let $uv \in E(T)$, (W, \overline{W}) the cut of uv, and f(uv) = k
- W-improvement is any tripartition of (C_1, C_2, C_3) of V with
 - 1. $f(C_i) < f(W)/2$
 - 2. $f(C_i \cap W) < f(W)$
 - $3. \ f(C_i \cap \overline{W}) < f(W)$

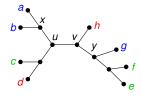
- Let $uv \in E(T)$, (W, \overline{W}) the cut of uv, and f(uv) = k
- W-improvement is any tripartition of (C_1, C_2, C_3) of V with
 - 1. $f(C_i) < f(W)/2$
 - $2. \ f(C_i \cap \underline{W}) < f(W)$
 - 3. $f(C_i \cap \overline{W}) < f(W)$
- Recall: If f(uv) > 2bw(f), then W-improvement exists

- Let $uv \in E(T)$, (W, \overline{W}) the cut of uv, and f(uv) = k
- W-improvement is any tripartition of (C_1, C_2, C_3) of V with
 - 1. $f(C_i) < f(W)/2$
 - $2. \ f(C_i \cap \underline{W}) < f(W)$
 - 3. $f(C_i \cap \overline{W}) < f(W)$
- Recall: If f(uv) > 2bw(f), then W-improvement exists

Theorem

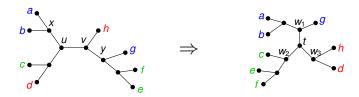
If there exists a W-improvement, then there exists a W-improvement (C_1 , C_2 , C_3) so that refinement with (uv, C_1 , C_2 , C_3) does not increase width and decreases the number of heavy edges.

Global Improvement: Observation



- Consider T rooted at r = uv
- For a node $x \in V(T)$, denote by $T_r[x] \subseteq V$ the leaves in the subtree below x
 - ► Example: $T_r[x] = \{a, b\}$ and $T_r[y] = \{e, f, g\}$

Global Improvement: Observation



- Consider T rooted at r = uv
- For a node x ∈ V(T), denote by T_r[x] ⊆ V the leaves in the subtree below x
 Example: T_r[x] = {a, b} and T_r[y] = {e, f, g}
- Let T' be refinement of T with (r, C_1, C_2, C_3)
- Observation: Each edge of T' corresponds either to $(C_i, \overline{C_i})$ or to $(T_r[x] \cap C_i, \overline{T_r[x] \cap C_i})$ for some $x \in V(T)$

• Let (W, \overline{W}) be a cut corresponding to an edge uv of the decomposition

- Let (W, \overline{W}) be a cut corresponding to an edge uv of the decomposition
- A minimum W-improvement is a W-improvement (C_1, C_2, C_3) that
 - 1. minimizes $\max(f(C_1), f(C_2), f(C_3))$ among W-improvements
 - 2. subject to (1), minimizes the number of non-empty C_i
 - 3. subject to (1,2), minimizes $f(C_1) + f(C_2) + f(C_3)$
 - 4. subject to (1,2,3), maximizes the number of nodes x such that $T_r[x] \subseteq C_i$ for some i

- Let (W, W) be a cut corresponding to an edge uv of the decomposition
- A minimum W-improvement is a W-improvement (C_1, C_2, C_3) that
 - 1. minimizes $\max(f(C_1), f(C_2), f(C_3))$ among W-improvements
 - 2. subject to (1), minimizes the number of non-empty C_i
 - 3. subject to (1,2), minimizes $f(C_1) + f(C_2) + f(C_3)$
 - 4. subject to (1,2,3), maximizes the number of nodes x such that $T_r[x] \subseteq C_i$ for some i

Theorem

Let (C_1, C_2, C_3) be a minimum W-improvement. For any $x \in V(T)$ it holds that $f(T_r[x] \cap C_i) \leq f(T_r[x])$, and moreover $f(T_r[x] \cap C_i) = f(T_r[x])$ only if $T_r[x] \subseteq C_i$.

- Let (W, \overline{W}) be a cut corresponding to an edge uv of the decomposition
- A minimum W-improvement is a W-improvement (C_1, C_2, C_3) that
 - 1. minimizes $\max(f(C_1), f(C_2), f(C_3))$ among W-improvements
 - 2. subject to (1), minimizes the number of non-empty C_i
 - 3. subject to (1,2), minimizes $f(C_1) + f(C_2) + f(C_3)$
 - 4. subject to (1,2,3), maximizes the number of nodes x such that $T_r[x] \subseteq C_i$ for some i

Theorem

Let (C_1, C_2, C_3) be a minimum W-improvement. For any $x \in V(T)$ it holds that $f(T_r[x] \cap C_i) \leq f(T_r[x])$, and moreover $f(T_r[x] \cap C_i) = f(T_r[x])$ only if $T_r[x] \subseteq C_i$.

• For each edge e of T, at most one of the new edges corresponding to e has width f(e), others have width < f(e)

- Let (W, \overline{W}) be a cut corresponding to an edge uv of the decomposition
- A minimum W-improvement is a W-improvement (C_1, C_2, C_3) that
 - 1. minimizes $\max(f(C_1), f(C_2), f(C_3))$ among W-improvements
 - 2. subject to (1), minimizes the number of non-empty C_i
 - 3. subject to (1,2), minimizes $f(C_1) + f(C_2) + f(C_3)$
 - 4. subject to (1,2,3), maximizes the number of nodes x such that $T_r[x] \subseteq C_i$ for some i

Theorem

Let (C_1, C_2, C_3) be a minimum W-improvement. For any $x \in V(T)$ it holds that $f(T_r[x] \cap C_i) \leq f(T_r[x])$, and moreover $f(T_r[x] \cap C_i) = f(T_r[x])$ only if $T_r[x] \subseteq C_i$.

- For each edge e of T, at most one of the new edges corresponding to e has width f(e), others have width < f(e)
- \bullet For the edge uv, none of the new edges corresponding to uv has width f(uv)
 - ⇒ Strict improvement

Plan

- 1. Definitions
- 2. Overview of rankwidth algorithm
- 3. Combinatorial framework
- 4. Algorithmic framework

- General algorithm for improving a branch decomposition:
- 1. Let T have width k, select edge uv with f(uv) = k

- General algorithm for improving a branch decomposition:
- 1. Let T have width k, select edge uv with f(uv) = k
- 2. Root T at uv, denote (W, \overline{W}) the cut of uv

- General algorithm for improving a branch decomposition:
- 1. Let T have width k, select edge uv with f(uv) = k
- 2. Root T at uv, denote (W, \overline{W}) the cut of uv
- Use dynamic programming to compute minimum W-improvement or conclude k ≤ 2bw(f)

- General algorithm for improving a branch decomposition:
- 1. Let T have width k, select edge uv with f(uv) = k
- 2. Root T at uv, denote (W, \overline{W}) the cut of uv
- Use dynamic programming to compute minimum W-improvement or conclude k ≤ 2bw(f)
- 4. If minimum W-improvement found, refine T using it

- General algorithm for improving a branch decomposition:
- 1. Let T have width k, select edge uv with f(uv) = k
- 2. Root T at uv, denote (W, \overline{W}) the cut of uv
- 3. Use dynamic programming to compute minimum W-improvement or conclude $k \leq 2bw(f)$
- 4. If minimum W-improvement found, refine T using it
- ⇒ The number of heavy edges decreased

- General algorithm for improving a branch decomposition:
- 1. Let T have width k, select edge uv with f(uv) = k
- 2. Root T at uv, denote (W, \overline{W}) the cut of uv
- Use dynamic programming to compute minimum W-improvement or conclude k ≤ 2bw(f)
- 4. If minimum W-improvement found, refine T using it
- ⇒ The number of heavy edges decreased
- 5. Repeat until the width of *T* decreases (at most *n* iterations)

- General algorithm for improving a branch decomposition:
- 1. Let T have width k, select edge uv with f(uv) = k
- 2. Root T at uv, denote (W, \overline{W}) the cut of uv
- Use dynamic programming to compute minimum W-improvement or conclude k ≤ 2bw(f)
- 4. If minimum W-improvement found, refine T using it
- ⇒ The number of heavy edges decreased
- 5. Repeat until the width of *T* decreases (at most *n* iterations)
- \Rightarrow Total time complexity $t(k) \cdot n^2$, where t(k) time complexity of dynamic programming

- General algorithm for improving a branch decomposition:
- 1. Let T have width k, select edge uv with f(uv) = k
- 2. Root T at uv, denote (W, \overline{W}) the cut of uv
- Use dynamic programming to compute minimum W-improvement or conclude k ≤ 2bw(f)
- 4. If minimum W-improvement found, refine T using it
- ⇒ The number of heavy edges decreased
- 5. Repeat until the width of *T* decreases (at most *n* iterations)
- \Rightarrow Total time complexity $t(k) \cdot n^2$, where t(k) time complexity of dynamic programming
 - Too slow! Target is $t(k) \cdot n$

Framework for Fast Algorithms

Assume dynamic programming data structure for computing minimum W-improvements with time complexity t(k) per node

Framework for Fast Algorithms

Assume dynamic programming data structure for computing minimum W-improvements with time complexity t(k) per node

Theorem

There is an algorithm, that given a branch decomposition of width k, in time $t(k)2^{O(k)}n$ either outputs a branch decomposition of width at most k-1, or concludes $k \le 2bw(f)$.

Framework for Fast Algorithms

Assume dynamic programming data structure for computing minimum W-improvements with time complexity t(k) per node

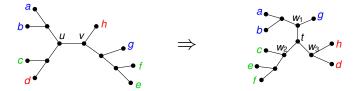
Theorem

There is an algorithm, that given a branch decomposition of width k, in time $t(k)2^{O(k)}n$ either outputs a branch decomposition of width at most k-1, or concludes $k \le 2bw(f)$.

- For rankwidth $t(k) = 2^{2^{\mathcal{O}(k)}}$
- For graph branchwidth $t(k) = 2^{O(k)}$

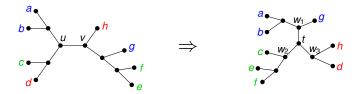
Amortization technique

Example with $(r, C_1, C_2, C_3) = (uv, \{a, b, g\}, \{c, e, f\}, \{d, h\})$



• Consider T rooted at r = uv

Amortization technique



- Consider T rooted at r = uv
- ullet Observation: If $T_r[x]\subseteq C_i$, then the subtree of x appears identically in refinement

Amortization technique

- Consider T rooted at r = uv
- Observation: If $T_r[x] \subseteq C_i$, then the subtree of x appears identically in refinement
 - ▶ Example: $T_r[x] = \{a, b\} \subseteq C_1$ and $T_r[y] = \{e, f\} \subseteq C_2$

Amortization technique

Example with $(r, C_1, C_2, C_3) = (uv, \{a, b, g\}, \{c, e, f\}, \{d, h\})$

- Consider T rooted at r = uv
- Observation: If $T_r[x] \subseteq C_i$, then the subtree of x appears identically in refinement
 - ▶ Example: $T_r[x] = \{a, b\} \subseteq C_1$ and $T_r[y] = \{e, f\} \subseteq C_2$
- Call the nodes for which this does not happen the edit set R of the refinement

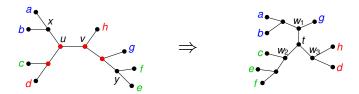
Amortization technique

Example with $(r, C_1, C_2, C_3) = (uv, \{a, b, g\}, \{c, e, f\}, \{d, h\})$

- Consider T rooted at r = uv
- Observation: If $T_r[x] \subseteq C_i$, then the subtree of x appears identically in refinement
 - ▶ Example: $T_r[x] = \{a, b\} \subseteq C_1$ and $T_r[y] = \{e, f\} \subseteq C_2$
- Call the nodes for which this does **not** happen the edit set R of the refinement
 - ▶ Implement refinement by changing only R, in time $\mathcal{O}(t(n) \cdot |R|)$

Amortization technique

Example with $(r, C_1, C_2, C_3) = (uv, \{a, b, g\}, \{c, e, f\}, \{d, h\})$



- Consider T rooted at r = uv
- Observation: If $T_r[x] \subseteq C_i$, then the subtree of x appears identically in refinement
 - ▶ Example: $T_r[x] = \{a, b\} \subseteq C_1$ and $T_r[y] = \{e, f\} \subseteq C_2$
- Call the nodes for which this does **not** happen the edit set *R* of the refinement
 - ▶ Implement refinement by changing only R, in time $\mathcal{O}(t(n) \cdot |R|)$
 - ▶ Over any sequence of refinements, $\sum |R| = \mathcal{O}(3^k \cdot k \cdot n)$

ullet Maintain dynamic programming tables towards a root edge r=uv

- Maintain dynamic programming tables towards a root edge r = uv
- When changing r = uv to an incident edge r' = vw, only the table of v needs to be recomputed

- Maintain dynamic programming tables towards a root edge r = uv
- When changing r = uv to an incident edge r' = vw, only the table of v needs to be recomputed

• Use DFS to traverse the tree and refine when necessary, total amount of re-computed DP-tables will be $2^{\mathcal{O}(k)}n$ by refinement amortization

- Maintain dynamic programming tables towards a root edge r = uv
- When changing r = uv to an incident edge r' = vw, only the table of v needs to be recomputed

- Use DFS to traverse the tree and refine when necessary, total amount of re-computed DP-tables will be 2^{O(k)} n by refinement amortization
- \Rightarrow Total time complexity $t(k)2^{O(k)}n$

 General algorithmic framework for 2-approximating branchwidth of connectivity functions that support efficient dynamic programming

 General algorithmic framework for 2-approximating branchwidth of connectivity functions that support efficient dynamic programming

- Application: $2^{2^{\mathcal{O}(k)}} n^2$ time 2-approximation algorithm for rankwidth
 - ▶ Breaks the n³ barrier for rankwidth

 General algorithmic framework for 2-approximating branchwidth of connectivity functions that support efficient dynamic programming

- Application: $2^{2^{\mathcal{O}(k)}} n^2$ time 2-approximation algorithm for rankwidth
 - ▶ Breaks the n³ barrier for rankwidth

• Open problem: Is there a $f(k)(n+m)^{1.99}$ time g(k)-approximation algorithm for rankwidth?

 General algorithmic framework for 2-approximating branchwidth of connectivity functions that support efficient dynamic programming

- Application: $2^{2^{\mathcal{O}(k)}} n^2$ time 2-approximation algorithm for rankwidth
 - ▶ Breaks the n³ barrier for rankwidth

- Open problem: Is there a $f(k)(n+m)^{1.99}$ time g(k)-approximation algorithm for rankwidth?
 - Bodlaender-type compression?

Bibliography