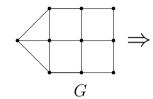
Minor Containment and Disjoint Paths in almost-linear time

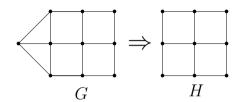
Tuukka Korhonen

based on joint work with Michał Pilipczuk and Giannos Stamoulis from the University of Warsaw (accepted to FOCS 2024)

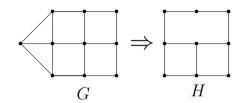
19 September 2024

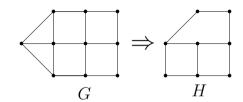

• A graph H is a minor of a graph G if H can be obtained from G by

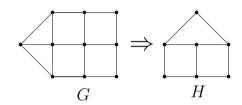
- A graph H is a minor of a graph G if H can be obtained from G by
 - Vertex deletions

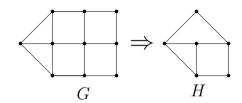

- A graph H is a minor of a graph G if H can be obtained from G by
 - Vertex deletions
 - Edge deletions

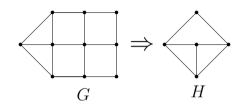
- A graph H is a minor of a graph G if H can be obtained from G by
 - Vertex deletions
 - Edge deletions
 - Edge contractions

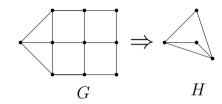

- A graph H is a minor of a graph G if H can be obtained from G by
 - Vertex deletions
 - Edge deletions
 - Edge contractions

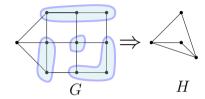

- A graph H is a minor of a graph G if H can be obtained from G by
 - Vertex deletions
 - Edge deletions
 - Edge contractions

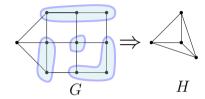

- A graph H is a minor of a graph G if H can be obtained from G by
 - Vertex deletions
 - Edge deletions
 - Edge contractions

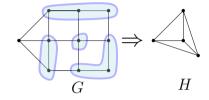

- A graph H is a minor of a graph G if H can be obtained from G by
 - Vertex deletions
 - Edge deletions
 - Edge contractions


- A graph H is a minor of a graph G if H can be obtained from G by
 - Vertex deletions
 - Edge deletions
 - Edge contractions


- A graph H is a minor of a graph G if H can be obtained from G by
 - Vertex deletions
 - Edge deletions
 - Edge contractions


- A graph H is a minor of a graph G if H can be obtained from G by
 - Vertex deletions
 - Edge deletions
 - Edge contractions

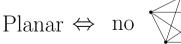

- A graph H is a minor of a graph G if H can be obtained from G by
 - Vertex deletions
 - Edge deletions
 - Edge contractions


- A graph H is a minor of a graph G if H can be obtained from G by
 - Vertex deletions
 - Edge deletions
 - Edge contractions

- A graph H is a minor of a graph G if H can be obtained from G by
 - Vertex deletions
 - Edge deletions
 - Edge contractions

- A graph H is a minor of a graph G if H can be obtained from G by
 - Vertex deletions
 - Edge deletions
 - Edge contractions

Theorem (Kuratowski-Wagner, 1930, 1937)


A graph is planar if and only if it does not contain K_5 or $K_{3,3}$ as a minor.

- A graph H is a minor of a graph G if H can be obtained from G by
 - Vertex deletions
 - Edge deletions
 - Edge contractions

Theorem (Kuratowski-Wagner, 1930, 1937)

A graph is planar if and only if it does not contain K_5 or $K_{3,3}$ as a minor.

or

Theorem (Robertson & Seymour, 1984-2004)

Theorem (Robertson & Seymour, 1984-2004)

Let $\mathcal C$ be a minor-closed graph class. There exists a finite set of graphs $\mathcal H$, s.t. a graph G is in $\mathcal C$ if and only if G does not contain a graph from $\mathcal H$ as a minor.

 \bullet Minor-closed: Every minor of a graph in ${\cal C}$ is in ${\cal C}$

Theorem (Robertson & Seymour, 1984-2004)

- ullet Minor-closed: Every minor of a graph in $\mathcal C$ is in $\mathcal C$
- Examples:

Theorem (Robertson & Seymour, 1984-2004)

- \bullet Minor-closed: Every minor of a graph in ${\cal C}$ is in ${\cal C}$
- Examples:
 - $C = \{ \text{the planar graphs} \}, \mathcal{H} = \{ K_5, K_{3,3} \}$

Theorem (Robertson & Seymour, 1984-2004)

- ullet Minor-closed: Every minor of a graph in ${\mathcal C}$ is in ${\mathcal C}$
- Examples:
 - $C = \{ \text{the planar graphs} \}, \mathcal{H} = \{ K_5, K_{3,3} \}$
 - $\quad \blacktriangleright \ \mathcal{C} = \{ \text{graphs admitting a linkless embedding in 3D} \}, \ \mathcal{H} = \{ \text{Petersen family} \}$

Theorem (Robertson & Seymour, 1984-2004)

- ullet Minor-closed: Every minor of a graph in ${\mathcal C}$ is in ${\mathcal C}$
- Examples:
 - $ightharpoonup \mathcal{C} = \{ ext{the planar graphs} \}, \, \mathcal{H} = \{ extit{K}_5, extit{K}_{3,3} \}$
 - $ightharpoonup \mathcal{C} = \{ \text{graphs admitting a linkless embedding in 3D} \}, \mathcal{H} = \{ \text{Petersen family} \}$
 - $ightharpoonup C = \{ graphs that can be made forests by deleting at most 10 vertices \}$

Theorem (Robertson & Seymour, 1984-2004)

- ullet Minor-closed: Every minor of a graph in ${\mathcal C}$ is in ${\mathcal C}$
- Examples:
 - $C = \{\text{the planar graphs}\}, \mathcal{H} = \{K_5, K_{3,3}\}$
 - $ightharpoonup \mathcal{C} = \{ \text{graphs admitting a linkless embedding in 3D} \}, \mathcal{H} = \{ \text{Petersen family} \}$
 - $C = \{ \text{graphs that can be made forests by deleting at most 10 vertices} \}$
 - $ightharpoonup \mathcal{C} = \{ \text{graphs that can be embedded on a torus after deleting at most 5 edges} \}$

Theorem (Robertson & Seymour, 1984-2004)

- ullet Minor-closed: Every minor of a graph in ${\mathcal C}$ is in ${\mathcal C}$
- Examples:
 - $C = \{ \text{the planar graphs} \}, \mathcal{H} = \{ K_5, K_{3,3} \}$
 - $ightharpoonup \mathcal{C} = \{ \text{graphs admitting a linkless embedding in 3D} \}, \mathcal{H} = \{ \text{Petersen family} \}$
 - C = {graphs that can be made forests by deleting at most 10 vertices}
 - $ightharpoonup C = \{ graphs that can be embedded on a torus after deleting at most 5 edges \}$
 - $C = \{ \text{graphs of treewidth at most 20} \}$

Theorem (Robertson & Seymour, 1984-2004)

- ullet Minor-closed: Every minor of a graph in ${\mathcal C}$ is in ${\mathcal C}$
- Examples:
 - $C = \{ \text{the planar graphs} \}, \mathcal{H} = \{ K_5, K_{3,3} \}$
 - ${\color{blue} \blacktriangleright} \ {\mathcal C} = \{ \text{graphs admitting a linkless embedding in 3D} \}, \, {\color{blue} {\mathcal H}} = \{ \text{Petersen family} \}$
 - $C = \{ \text{graphs that can be made forests by deleting at most 10 vertices} \}$
 - $ightharpoonup C = \{ graphs that can be embedded on a torus after deleting at most 5 edges \}$
 - $ightharpoonup \mathcal{C} = \{ \text{graphs of treewidth at most 20} \}$
- Proved in the Graph Minors Series of Robertson & Seymour, spanning 23 papers in 1983–2012.

Theorem (Robertson & Seymour, 1984-2012)

There exists an $f(H) \cdot n^3$ time algorithm to test if a given graph H is a minor of a given n-vertex graph G.

Theorem (Robertson & Seymour, 1984-2012)

There exists an $f(H) \cdot n^3$ time algorithm to test if a given graph H is a minor of a given n-vertex graph G.

Combined with the Graph Minor Theorem, we get:

Corollary

Theorem (Robertson & Seymour, 1984-2012)

There exists an $f(H) \cdot n^3$ time algorithm to test if a given graph H is a minor of a given n-vertex graph G.

Combined with the Graph Minor Theorem, we get:

Corollary

For every minor-closed graph class C, there exists an $O(n^3)$ time algorithm to test if a given n-vertex graph is in C.

 \Rightarrow $\mathcal{O}(n^3)$ time algorithms for many graph problems, some of which were not even known to be decidable before the Graph Minors Series

Theorem (Robertson & Seymour, 1984-2012)

There exists an $f(H) \cdot n^3$ time algorithm to test if a given graph H is a minor of a given n-vertex graph G.

Combined with the Graph Minor Theorem, we get:

Corollary

- \Rightarrow $\mathcal{O}(n^3)$ time algorithms for many graph problems, some of which were not even known to be decidable before the Graph Minors Series
- (non-constructive) $f(k) \cdot n^3$ time algorithms for parameterized problems

Theorem (Robertson & Seymour, 1984-2012)

There exists an $f(H) \cdot n^3$ time algorithm to test if a given graph H is a minor of a given n-vertex graph G.

Combined with the Graph Minor Theorem, we get:

Corollary

- \Rightarrow $\mathcal{O}(n^3)$ time algorithms for many graph problems, some of which were not even known to be decidable before the Graph Minors Series
- (non-constructive) $f(k) \cdot n^3$ time algorithms for parameterized problems
 - ▶ Inspired the birth of Parameterized complexity in the late 80s

Theorem (Robertson & Seymour, 1984-2012)

There exists an $f(H) \cdot n^3$ time algorithm to test if a given graph H is a minor of a given n-vertex graph G.

Combined with the Graph Minor Theorem, we get:

Corollary

- \Rightarrow $\mathcal{O}(n^3)$ time algorithms for many graph problems, some of which were not even known to be decidable before the Graph Minors Series
- (non-constructive) $f(k) \cdot n^3$ time algorithms for parameterized problems
 - Inspired the birth of Parameterized complexity in the late 80s
- More generally, an $f(H) \cdot n^3$ time algorithm for Rooted Minor Containment

Theorem (Robertson & Seymour, 1984-2012)

There exists an $f(H) \cdot n^3$ time algorithm to test if a given graph H is a minor of a given n-vertex graph G.

Combined with the Graph Minor Theorem, we get:

Corollary

- \Rightarrow $\mathcal{O}(n^3)$ time algorithms for many graph problems, some of which were not even known to be decidable before the Graph Minors Series
- (non-constructive) $f(k) \cdot n^3$ time algorithms for parameterized problems
 - Inspired the birth of Parameterized complexity in the late 80s
- More generally, an $f(H) \cdot n^3$ time algorithm for Rooted Minor Containment
 - $\Rightarrow f(k) \cdot n^3$ time algorithm for the k-Disjoint Paths problem

The algorithm of Robertson & Seymour was improved to f(H) · n² by [Kawarabayashi, Kobayashi & Reed, 2012]

- The algorithm of Robertson & Seymour was improved to $f(H) \cdot n^2$ by [Kawarabayashi, Kobayashi & Reed, 2012]
- Linear-time algorithms for planar graphs by [Bodlaender, 1993] and [Reed, Robertson, Schrijver & Seymour, 1993]

- The algorithm of Robertson & Seymour was improved to $f(H) \cdot n^2$ by [Kawarabayashi, Kobayashi & Reed, 2012]
- Linear-time algorithms for planar graphs by [Bodlaender, 1993] and [Reed, Robertson, Schrijver & Seymour, 1993]

Theorem (K., Pilipczuk, Stamoulis, FOCS 2024)

There is an $f(H) \cdot m^{1+o(1)}$ time algorithm for Rooted Minor Containment

- The algorithm of Robertson & Seymour was improved to $f(H) \cdot n^2$ by [Kawarabayashi, Kobayashi & Reed, 2012]
- Linear-time algorithms for planar graphs by [Bodlaender, 1993] and [Reed, Robertson, Schrijver & Seymour, 1993]

Theorem (K., Pilipczuk, Stamoulis, FOCS 2024)

There is an $f(H) \cdot m^{1+o(1)}$ time algorithm for Rooted Minor Containment

• m = |V(G)| + |E(G)| the number of vertices + edges of G

- The algorithm of Robertson & Seymour was improved to $f(H) \cdot n^2$ by [Kawarabayashi, Kobayashi & Reed, 2012]
- Linear-time algorithms for planar graphs by [Bodlaender, 1993] and [Reed, Robertson, Schrijver & Seymour, 1993]

Theorem (K., Pilipczuk, Stamoulis, FOCS 2024)

There is an $f(H) \cdot m^{1+o(1)}$ time algorithm for Rooted Minor Containment

- m = |V(G)| + |E(G)| the number of vertices + edges of G
- Dependence on *H* huge but computable.

- The algorithm of Robertson & Seymour was improved to $f(H) \cdot n^2$ by [Kawarabayashi, Kobayashi & Reed, 2012]
- Linear-time algorithms for planar graphs by [Bodlaender, 1993] and [Reed, Robertson, Schrijver & Seymour, 1993]

Theorem (K., Pilipczuk, Stamoulis, FOCS 2024)

There is an $f(H) \cdot m^{1+o(1)}$ time algorithm for Rooted Minor Containment

- m = |V(G)| + |E(G)| the number of vertices + edges of G
- Dependence on H huge but computable.

Corollary

Every minor-closed graph class has an $n^{1+o(1)}$ time recognition algorithm

- The algorithm of Robertson & Seymour was improved to $f(H) \cdot n^2$ by [Kawarabayashi, Kobayashi & Reed, 2012]
- Linear-time algorithms for planar graphs by [Bodlaender, 1993] and [Reed, Robertson, Schrijver & Seymour, 1993]

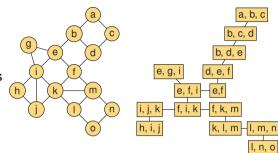
Theorem (K., Pilipczuk, Stamoulis, FOCS 2024)

There is an $f(H) \cdot m^{1+o(1)}$ time algorithm for Rooted Minor Containment

- m = |V(G)| + |E(G)| the number of vertices + edges of G
- Dependence on H huge but computable.

Corollary

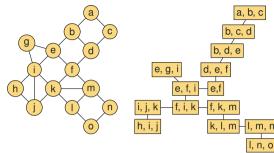
Every minor-closed graph class has an $n^{1+o(1)}$ time recognition algorithm


Corollary

There is an $f(k) \cdot m^{1+o(1)}$ time algorithm for the k-Disjoint Paths problem

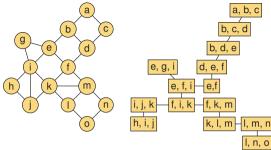
The Algorithm

The algorithm

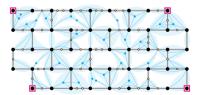

 Treewidth of a graph: Parameter between 0 and n-1 measuring how tree-like the graph is

Graph *G*Treewidth 2

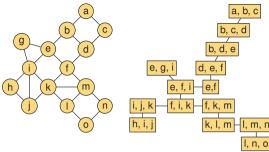
A tree decomposition of GWidth = 2


- Treewidth of a graph: Parameter between 0 and n-1 measuring how tree-like the graph is
- If treewidth of G is $\leq f(H)$, solve the problem by dynamic programming in $f(H) \cdot n$ time

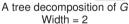
Graph *G* Treewidth 2

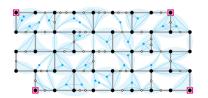

A tree decomposition of GWidth = 2

- Treewidth of a graph: Parameter between 0 and n-1 measuring how tree-like the graph is
- If treewidth of G is $\leq f(H)$, solve the problem by dynamic programming in $f(H) \cdot n$ time
- If treewidth is > f(H), detect and remove an Irrelevant Vertex from G

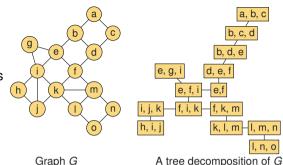


Graph *G*Treewidth 2

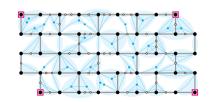

A tree decomposition of GWidth = 2



- Treewidth of a graph: Parameter between 0 and n-1 measuring how tree-like the graph is
- If treewidth of G is $\leq f(H)$, solve the problem by dynamic programming in $f(H) \cdot n$ time
- If treewidth is > f(H), detect and remove an Irrelevant Vertex from G
- Robertson & Seymour: Detect irrelevant vertex in $f(H) \cdot n^2$ time $\Rightarrow f(H) \cdot n^3$ time algorithm



Graph *G*Treewidth 2



- Treewidth of a graph: Parameter between 0 and n-1 measuring how tree-like the graph is
- If treewidth of G is $\leq f(H)$, solve the problem by dynamic programming in $f(H) \cdot n$ time
- If treewidth is > f(H), detect and remove an Irrelevant Vertex from G

• Robertson & Seymour: Detect irrelevant vertex in $f(H) \cdot n^2$ time $\Rightarrow f(H) \cdot n^3$ time algorithm

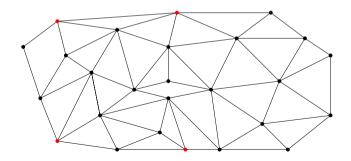
• Kawarabayashi, Kobayashi & Reed: Detect irrelevant vertex in $f(H) \cdot n$ time $\Rightarrow f(H) \cdot n^2$ time algorithm

Width = 2

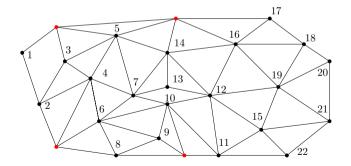
Treewidth 2

1. Fast implementation of the irrelevant vertex technique on apex-minor-free graphs

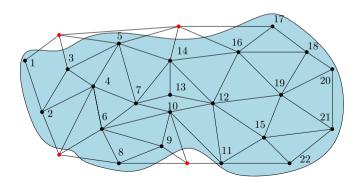
- 1. Fast implementation of the irrelevant vertex technique on apex-minor-free graphs
 - Using dynamic treewidth data structure of [K., Majewski, Nadara, Pilipczuk & Sokołowski, 2023]

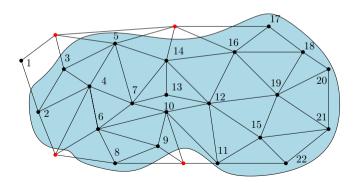

- 1. Fast implementation of the irrelevant vertex technique on apex-minor-free graphs
 - Using dynamic treewidth data structure of [K., Majewski, Nadara, Pilipczuk & Sokołowski, 2023]
- 2. Reducing unbreakable clique-minor-free graphs to apex-minor-free graphs

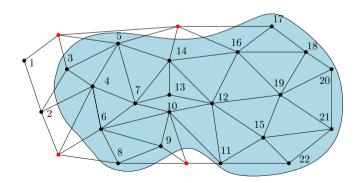
- 1. Fast implementation of the irrelevant vertex technique on apex-minor-free graphs
 - Using dynamic treewidth data structure of [K., Majewski, Nadara, Pilipczuk & Sokołowski, 2023]
- 2. Reducing unbreakable clique-minor-free graphs to apex-minor-free graphs
- 3. Reducing clique-minor-free graphs to unbreakable clique-minor-free graphs

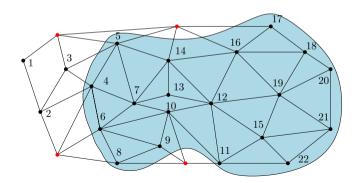

- 1. Fast implementation of the irrelevant vertex technique on apex-minor-free graphs
 - Using dynamic treewidth data structure of [K., Majewski, Nadara, Pilipczuk & Sokołowski, 2023]
- 2. Reducing unbreakable clique-minor-free graphs to apex-minor-free graphs
- 3. Reducing clique-minor-free graphs to unbreakable clique-minor-free graphs
 - Fast implementation of the recursive understanding technique

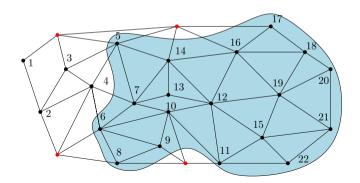
- 1. Fast implementation of the irrelevant vertex technique on apex-minor-free graphs
 - Using dynamic treewidth data structure of [K., Majewski, Nadara, Pilipczuk & Sokołowski, 2023]
- 2. Reducing unbreakable clique-minor-free graphs to apex-minor-free graphs
- 3. Reducing clique-minor-free graphs to unbreakable clique-minor-free graphs
 - Fast implementation of the recursive understanding technique
 - Using recent breakthroughs in almost-linear time graph algorithms: Isolating cuts [Li & Panigrahi, 2020], almost-linear time (deterministic) max-flow [van den Brand, Chen, Kyng, Liu, Peng, Probst Gutenberg, Sachdeva & Sidford, 2023], and mimicking networks of [Saranurak & Yingchareonthawornchai, 2022]

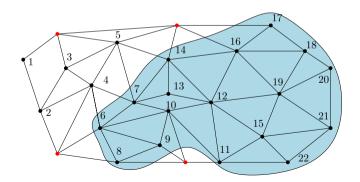

- 1. Fast implementation of the irrelevant vertex technique on apex-minor-free graphs
 - Using dynamic treewidth data structure of [K., Majewski, Nadara, Pilipczuk & Sokołowski, 2023]
- 2. Reducing unbreakable clique-minor-free graphs to apex-minor-free graphs
- 3. Reducing clique-minor-free graphs to unbreakable clique-minor-free graphs
 - ► Fast implementation of the recursive understanding technique
 - Using recent breakthroughs in almost-linear time graph algorithms: Isolating cuts [Li & Panigrahi, 2020], almost-linear time (deterministic) max-flow [van den Brand, Chen, Kyng, Liu, Peng, Probst Gutenberg, Sachdeva & Sidford, 2023], and mimicking networks of [Saranurak & Yingchareonthawornchai, 2022]
- 4. Reducing general graphs to clique-minor-free graphs

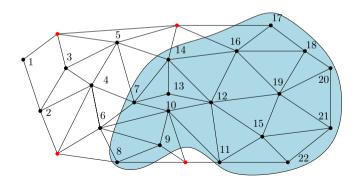

1. Find an ordering v_1, \ldots, v_ℓ of G - X so that every suffix is connected

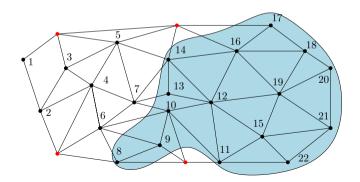

- 1. Find an ordering v_1, \ldots, v_ℓ of G X so that every suffix is connected
- 2. Contract v_1, \ldots, v_ℓ into a mega-vertex

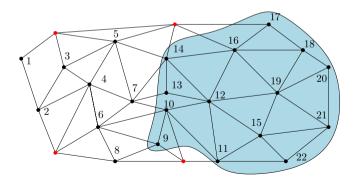

- 1. Find an ordering v_1, \ldots, v_ℓ of G X so that every suffix is connected
- 2. Contract v_1, \ldots, v_ℓ into a mega-vertex
- 3. Start uncontracting in the order v_1, \ldots, v_ℓ

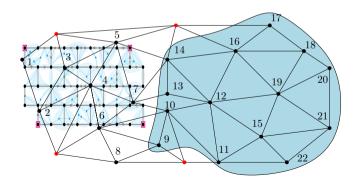

- 1. Find an ordering v_1, \ldots, v_ℓ of G X so that every suffix is connected
- 2. Contract v_1, \ldots, v_ℓ into a mega-vertex
- 3. Start uncontracting in the order v_1, \ldots, v_ℓ

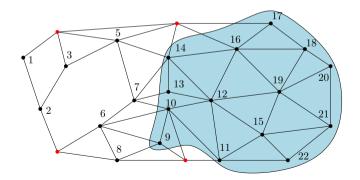

- 1. Find an ordering v_1, \ldots, v_ℓ of G X so that every suffix is connected
- 2. Contract v_1, \ldots, v_ℓ into a mega-vertex
- 3. Start uncontracting in the order v_1, \ldots, v_ℓ

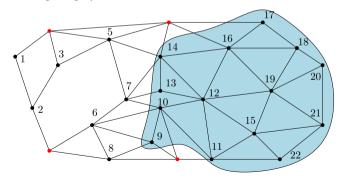

- 1. Find an ordering v_1, \ldots, v_ℓ of G X so that every suffix is connected
- 2. Contract v_1, \ldots, v_ℓ into a mega-vertex
- 3. Start uncontracting in the order v_1, \ldots, v_ℓ

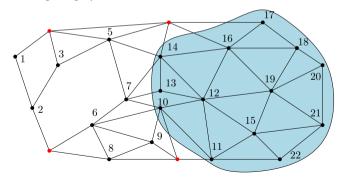

- 1. Find an ordering v_1, \ldots, v_ℓ of G X so that every suffix is connected
- 2. Contract v_1, \ldots, v_ℓ into a mega-vertex
- 3. Start uncontracting in the order v_1, \ldots, v_ℓ

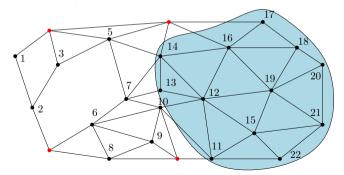

- 1. Find an ordering v_1, \ldots, v_ℓ of G X so that every suffix is connected
- 2. Contract v_1, \ldots, v_ℓ into a mega-vertex
- 3. Start uncontracting in the order v_1, \ldots, v_ℓ

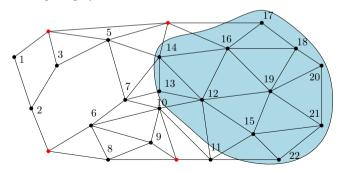

- 1. Find an ordering v_1, \ldots, v_ℓ of G X so that every suffix is connected
- 2. Contract v_1, \ldots, v_ℓ into a mega-vertex
- 3. Start uncontracting in the order v_1, \ldots, v_ℓ

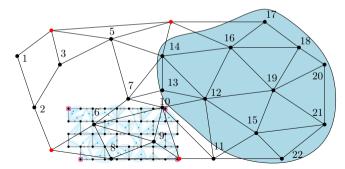

- 1. Find an ordering v_1, \ldots, v_ℓ of G X so that every suffix is connected
- 2. Contract v_1, \ldots, v_ℓ into a mega-vertex
- 3. Start uncontracting in the order v_1, \ldots, v_ℓ

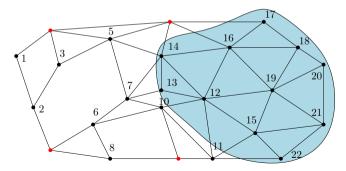

- 1. Find an ordering v_1, \ldots, v_ℓ of G X so that every suffix is connected
- 2. Contract v_1, \ldots, v_ℓ into a mega-vertex
- 3. Start uncontracting in the order v_1, \ldots, v_ℓ
- 4. When treewidth becomes large, find a flat wall whose compass does not contain the mega-vertex, and delete an irrelevant vertex from it

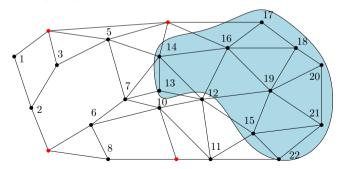

- 1. Find an ordering v_1, \ldots, v_ℓ of G X so that every suffix is connected
- 2. Contract v_1, \ldots, v_ℓ into a mega-vertex
- 3. Start uncontracting in the order v_1, \ldots, v_ℓ
- 4. When treewidth becomes large, find a flat wall whose compass does not contain the mega-vertex, and delete an irrelevant vertex from it

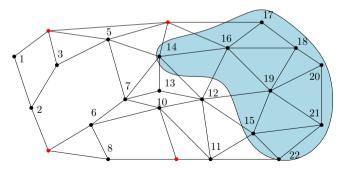

- 1. Find an ordering v_1, \ldots, v_ℓ of G X so that every suffix is connected
- 2. Contract v_1, \ldots, v_ℓ into a mega-vertex
- 3. Start uncontracting in the order v_1, \ldots, v_ℓ
- When treewidth becomes large, find a flat wall whose compass does not contain the mega-vertex, and delete an irrelevant vertex from it
- 5. Main idea: If the compass of the flat wall does not contain the mega-vertex, then it is the same in the contracted and the original graph

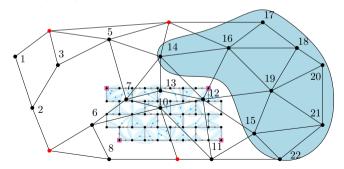

- 1. Find an ordering v_1, \ldots, v_ℓ of G X so that every suffix is connected
- 2. Contract v_1, \ldots, v_ℓ into a mega-vertex
- 3. Start uncontracting in the order v_1, \ldots, v_ℓ
- When treewidth becomes large, find a flat wall whose compass does not contain the mega-vertex, and delete an irrelevant vertex from it
- 5. Main idea: If the compass of the flat wall does not contain the mega-vertex, then it is the same in the contracted and the original graph

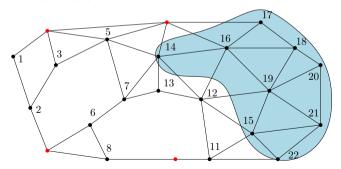

- 1. Find an ordering v_1, \ldots, v_ℓ of G X so that every suffix is connected
- 2. Contract v_1, \ldots, v_ℓ into a mega-vertex
- 3. Start uncontracting in the order v_1, \ldots, v_ℓ
- When treewidth becomes large, find a flat wall whose compass does not contain the mega-vertex, and delete an irrelevant vertex from it
- 5. Main idea: If the compass of the flat wall does not contain the mega-vertex, then it is the same in the contracted and the original graph

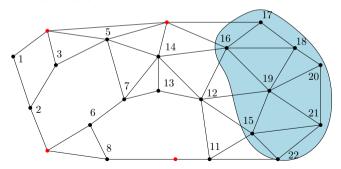

- 1. Find an ordering v_1, \ldots, v_ℓ of G X so that every suffix is connected
- 2. Contract v_1, \ldots, v_ℓ into a mega-vertex
- 3. Start uncontracting in the order v_1, \ldots, v_ℓ
- When treewidth becomes large, find a flat wall whose compass does not contain the mega-vertex, and delete an irrelevant vertex from it
- 5. Main idea: If the compass of the flat wall does not contain the mega-vertex, then it is the same in the contracted and the original graph

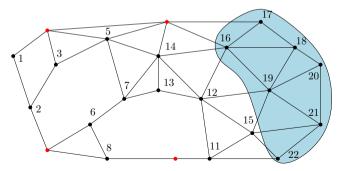

- 1. Find an ordering v_1, \ldots, v_ℓ of G X so that every suffix is connected
- 2. Contract v_1, \ldots, v_ℓ into a mega-vertex
- 3. Start uncontracting in the order v_1, \ldots, v_ℓ
- When treewidth becomes large, find a flat wall whose compass does not contain the mega-vertex, and delete an irrelevant vertex from it
- 5. Main idea: If the compass of the flat wall does not contain the mega-vertex, then it is the same in the contracted and the original graph

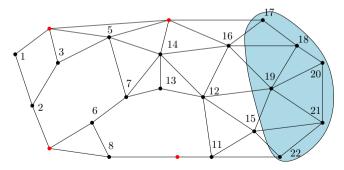

- 1. Find an ordering v_1, \ldots, v_ℓ of G X so that every suffix is connected
- 2. Contract v_1, \ldots, v_ℓ into a mega-vertex
- 3. Start uncontracting in the order v_1, \ldots, v_ℓ
- When treewidth becomes large, find a flat wall whose compass does not contain the mega-vertex, and delete an irrelevant vertex from it
- 5. Main idea: If the compass of the flat wall does not contain the mega-vertex, then it is the same in the contracted and the original graph

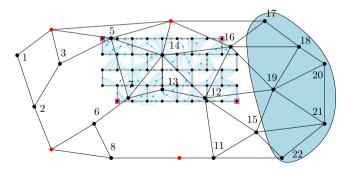

- 1. Find an ordering v_1, \ldots, v_ℓ of G X so that every suffix is connected
- 2. Contract v_1, \ldots, v_ℓ into a mega-vertex
- 3. Start uncontracting in the order v_1, \ldots, v_ℓ
- When treewidth becomes large, find a flat wall whose compass does not contain the mega-vertex, and delete an irrelevant vertex from it
- 5. Main idea: If the compass of the flat wall does not contain the mega-vertex, then it is the same in the contracted and the original graph

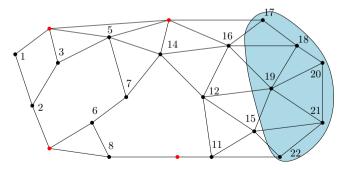

- 1. Find an ordering v_1, \ldots, v_ℓ of G X so that every suffix is connected
- 2. Contract v_1, \ldots, v_ℓ into a mega-vertex
- 3. Start uncontracting in the order v_1, \ldots, v_ℓ
- When treewidth becomes large, find a flat wall whose compass does not contain the mega-vertex, and delete an irrelevant vertex from it
- 5. Main idea: If the compass of the flat wall does not contain the mega-vertex, then it is the same in the contracted and the original graph

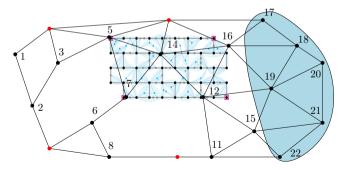

- 1. Find an ordering v_1, \ldots, v_ℓ of G X so that every suffix is connected
- 2. Contract v_1, \ldots, v_ℓ into a mega-vertex
- 3. Start uncontracting in the order v_1, \ldots, v_ℓ
- When treewidth becomes large, find a flat wall whose compass does not contain the mega-vertex, and delete an irrelevant vertex from it
- 5. Main idea: If the compass of the flat wall does not contain the mega-vertex, then it is the same in the contracted and the original graph

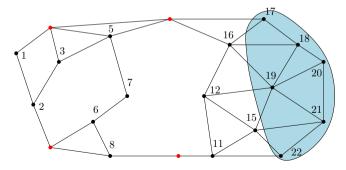

- 1. Find an ordering v_1, \ldots, v_ℓ of G X so that every suffix is connected
- 2. Contract v_1, \ldots, v_ℓ into a mega-vertex
- 3. Start uncontracting in the order v_1, \ldots, v_ℓ
- When treewidth becomes large, find a flat wall whose compass does not contain the mega-vertex, and delete an irrelevant vertex from it
- 5. Main idea: If the compass of the flat wall does not contain the mega-vertex, then it is the same in the contracted and the original graph

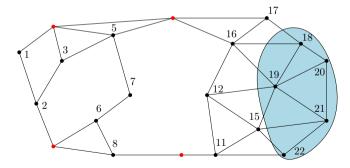

- 1. Find an ordering v_1, \ldots, v_ℓ of G X so that every suffix is connected
- 2. Contract v_1, \ldots, v_ℓ into a mega-vertex
- 3. Start uncontracting in the order v_1, \ldots, v_ℓ
- When treewidth becomes large, find a flat wall whose compass does not contain the mega-vertex, and delete an irrelevant vertex from it
- 5. Main idea: If the compass of the flat wall does not contain the mega-vertex, then it is the same in the contracted and the original graph

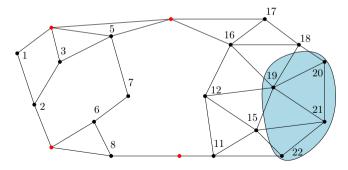

- 1. Find an ordering v_1, \ldots, v_ℓ of G X so that every suffix is connected
- 2. Contract v_1, \ldots, v_ℓ into a mega-vertex
- 3. Start uncontracting in the order v_1, \ldots, v_ℓ
- When treewidth becomes large, find a flat wall whose compass does not contain the mega-vertex, and delete an irrelevant vertex from it
- 5. Main idea: If the compass of the flat wall does not contain the mega-vertex, then it is the same in the contracted and the original graph

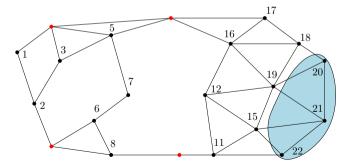

- 1. Find an ordering v_1, \ldots, v_ℓ of G X so that every suffix is connected
- 2. Contract v_1, \ldots, v_ℓ into a mega-vertex
- 3. Start uncontracting in the order v_1, \ldots, v_ℓ
- When treewidth becomes large, find a flat wall whose compass does not contain the mega-vertex, and delete an irrelevant vertex from it
- 5. Main idea: If the compass of the flat wall does not contain the mega-vertex, then it is the same in the contracted and the original graph

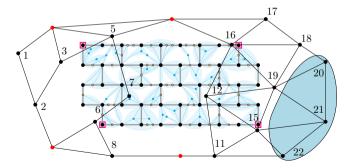

- 1. Find an ordering v_1, \ldots, v_ℓ of G X so that every suffix is connected
- 2. Contract v_1, \ldots, v_ℓ into a mega-vertex
- 3. Start uncontracting in the order v_1, \ldots, v_ℓ
- When treewidth becomes large, find a flat wall whose compass does not contain the mega-vertex, and delete an irrelevant vertex from it
- 5. Main idea: If the compass of the flat wall does not contain the mega-vertex, then it is the same in the contracted and the original graph

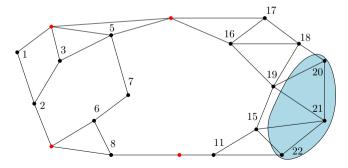

- 1. Find an ordering v_1, \ldots, v_ℓ of G X so that every suffix is connected
- 2. Contract v_1, \ldots, v_ℓ into a mega-vertex
- 3. Start uncontracting in the order v_1, \ldots, v_ℓ
- When treewidth becomes large, find a flat wall whose compass does not contain the mega-vertex, and delete an irrelevant vertex from it
- 5. Main idea: If the compass of the flat wall does not contain the mega-vertex, then it is the same in the contracted and the original graph

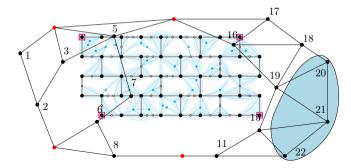

- 1. Find an ordering v_1, \ldots, v_ℓ of G X so that every suffix is connected
- 2. Contract v_1, \ldots, v_ℓ into a mega-vertex
- 3. Start uncontracting in the order v_1, \ldots, v_ℓ
- When treewidth becomes large, find a flat wall whose compass does not contain the mega-vertex, and delete an irrelevant vertex from it
- 5. Main idea: If the compass of the flat wall does not contain the mega-vertex, then it is the same in the contracted and the original graph

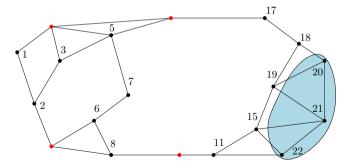

- 1. Find an ordering v_1, \ldots, v_ℓ of G X so that every suffix is connected
- 2. Contract v_1, \ldots, v_ℓ into a mega-vertex
- 3. Start uncontracting in the order v_1, \ldots, v_ℓ
- When treewidth becomes large, find a flat wall whose compass does not contain the mega-vertex, and delete an irrelevant vertex from it
- 5. Main idea: If the compass of the flat wall does not contain the mega-vertex, then it is the same in the contracted and the original graph

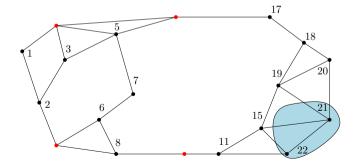

- 1. Find an ordering v_1, \ldots, v_ℓ of G X so that every suffix is connected
- 2. Contract v_1, \ldots, v_ℓ into a mega-vertex
- 3. Start uncontracting in the order v_1, \ldots, v_ℓ
- When treewidth becomes large, find a flat wall whose compass does not contain the mega-vertex, and delete an irrelevant vertex from it
- 5. Main idea: If the compass of the flat wall does not contain the mega-vertex, then it is the same in the contracted and the original graph

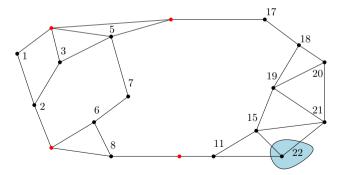

- 1. Find an ordering v_1, \ldots, v_ℓ of G X so that every suffix is connected
- 2. Contract v_1, \ldots, v_ℓ into a mega-vertex
- 3. Start uncontracting in the order v_1, \ldots, v_ℓ
- When treewidth becomes large, find a flat wall whose compass does not contain the mega-vertex, and delete an irrelevant vertex from it
- 5. Main idea: If the compass of the flat wall does not contain the mega-vertex, then it is the same in the contracted and the original graph


- 1. Find an ordering v_1, \ldots, v_ℓ of G X so that every suffix is connected
- 2. Contract v_1, \ldots, v_ℓ into a mega-vertex
- 3. Start uncontracting in the order v_1, \ldots, v_ℓ
- When treewidth becomes large, find a flat wall whose compass does not contain the mega-vertex, and delete an irrelevant vertex from it
- 5. Main idea: If the compass of the flat wall does not contain the mega-vertex, then it is the same in the contracted and the original graph


- 1. Find an ordering v_1, \ldots, v_ℓ of G X so that every suffix is connected
- 2. Contract v_1, \ldots, v_ℓ into a mega-vertex
- 3. Start uncontracting in the order v_1, \ldots, v_ℓ
- When treewidth becomes large, find a flat wall whose compass does not contain the mega-vertex, and delete an irrelevant vertex from it
- 5. Main idea: If the compass of the flat wall does not contain the mega-vertex, then it is the same in the contracted and the original graph


- 1. Find an ordering v_1, \ldots, v_ℓ of G X so that every suffix is connected
- 2. Contract v_1, \ldots, v_ℓ into a mega-vertex
- 3. Start uncontracting in the order v_1, \ldots, v_ℓ
- When treewidth becomes large, find a flat wall whose compass does not contain the mega-vertex, and delete an irrelevant vertex from it
- 5. Main idea: If the compass of the flat wall does not contain the mega-vertex, then it is the same in the contracted and the original graph


- 1. Find an ordering v_1, \ldots, v_ℓ of G X so that every suffix is connected
- 2. Contract v_1, \ldots, v_ℓ into a mega-vertex
- 3. Start uncontracting in the order v_1, \ldots, v_ℓ
- When treewidth becomes large, find a flat wall whose compass does not contain the mega-vertex, and delete an irrelevant vertex from it
- 5. Main idea: If the compass of the flat wall does not contain the mega-vertex, then it is the same in the contracted and the original graph


- 1. Find an ordering v_1, \ldots, v_ℓ of G X so that every suffix is connected
- 2. Contract v_1, \ldots, v_ℓ into a mega-vertex
- 3. Start uncontracting in the order v_1, \ldots, v_ℓ
- When treewidth becomes large, find a flat wall whose compass does not contain the mega-vertex, and delete an irrelevant vertex from it
- 5. Main idea: If the compass of the flat wall does not contain the mega-vertex, then it is the same in the contracted and the original graph

- 1. Find an ordering v_1, \ldots, v_ℓ of G X so that every suffix is connected
- 2. Contract v_1, \ldots, v_ℓ into a mega-vertex
- 3. Start uncontracting in the order v_1, \ldots, v_ℓ
- When treewidth becomes large, find a flat wall whose compass does not contain the mega-vertex, and delete an irrelevant vertex from it
- 5. Main idea: If the compass of the flat wall does not contain the mega-vertex, then it is the same in the contracted and the original graph

- 1. Find an ordering v_1, \ldots, v_ℓ of G X so that every suffix is connected
- 2. Contract v_1, \ldots, v_ℓ into a mega-vertex
- 3. Start uncontracting in the order v_1, \ldots, v_ℓ
- When treewidth becomes large, find a flat wall whose compass does not contain the mega-vertex, and delete an irrelevant vertex from it
- 5. Main idea: If the compass of the flat wall does not contain the mega-vertex, then it is the same in the contracted and the original graph

• $f(H) \cdot m^{1+o(1)}$ time algorithm for Rooted Minor Containment

- $f(H) \cdot m^{1+o(1)}$ time algorithm for Rooted Minor Containment
- Fast irrelevant vertex technique for apex-minor-free graphs using dynamic treewidth

- $f(H) \cdot m^{1+o(1)}$ time algorithm for Rooted Minor Containment
- Fast irrelevant vertex technique for apex-minor-free graphs using dynamic treewidth
- Reduction to apex-minor-free using fast recursive understanding

- $f(H) \cdot m^{1+o(1)}$ time algorithm for Rooted Minor Containment
- Fast irrelevant vertex technique for apex-minor-free graphs using dynamic treewidth
- Reduction to apex-minor-free using fast recursive understanding

- $f(H) \cdot m^{1+o(1)}$ time algorithm for Rooted Minor Containment
- Fast irrelevant vertex technique for apex-minor-free graphs using dynamic treewidth
- Reduction to apex-minor-free using fast recursive understanding

Future work:

• Computing the Robertson-Seymour decomposition, topological minor containment

- $f(H) \cdot m^{1+o(1)}$ time algorithm for Rooted Minor Containment
- Fast irrelevant vertex technique for apex-minor-free graphs using dynamic treewidth
- Reduction to apex-minor-free using fast recursive understanding

- Computing the Robertson-Seymour decomposition, topological minor containment
- Replacing recursive understanding by recent almost-linear time algorithm for unbreakable decomposition by [Anand, Lee, Li, Long & Saranurak, 2024]

- $f(H) \cdot m^{1+o(1)}$ time algorithm for Rooted Minor Containment
- Fast irrelevant vertex technique for apex-minor-free graphs using dynamic treewidth
- Reduction to apex-minor-free using fast recursive understanding

- Computing the Robertson-Seymour decomposition, topological minor containment
- Replacing recursive understanding by recent almost-linear time algorithm for unbreakable decomposition by [Anand, Lee, Li, Long & Saranurak, 2024]
- Optimization to $f(H) \cdot m$ polylog n?

- $f(H) \cdot m^{1+o(1)}$ time algorithm for Rooted Minor Containment
- Fast irrelevant vertex technique for apex-minor-free graphs using dynamic treewidth
- Reduction to apex-minor-free using fast recursive understanding

- Computing the Robertson-Seymour decomposition, topological minor containment
- Replacing recursive understanding by recent almost-linear time algorithm for unbreakable decomposition by [Anand, Lee, Li, Long & Saranurak, 2024]
- Optimization to $f(H) \cdot m$ polylog n?
 - ▶ Important problem: Optimization of dynamic treewidth to f(k) · polylog n?

- $f(H) \cdot m^{1+o(1)}$ time algorithm for Rooted Minor Containment
- Fast irrelevant vertex technique for apex-minor-free graphs using dynamic treewidth
- Reduction to apex-minor-free using fast recursive understanding

Future work:

- Computing the Robertson-Seymour decomposition, topological minor containment
- Replacing recursive understanding by recent almost-linear time algorithm for unbreakable decomposition by [Anand, Lee, Li, Long & Saranurak, 2024]
- Optimization to $f(H) \cdot m$ polylog n?
 - ▶ Important problem: Optimization of dynamic treewidth to f(k) · polylog n?

Thank you!